Product Data Sheet

Fursultiamine

Cat. No.: HY-B2082 CAS No.: 804-30-8

Molecular Formula: $C_{17}H_{26}N_4O_3S_2$

Molecular Weight: 398.54 Others Target: Pathway: Others

Storage: Powder -20°C 3 years

2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 106.7 mg/mL (267.73 mM; Need ultrasonic and warming)

 $H_2O : \ge 6.67 \text{ mg/mL} (16.74 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5092 mL	12.5458 mL	25.0916 mL
	5 mM	0.5018 mL	2.5092 mL	5.0183 mL
	10 mM	0.2509 mL	1.2546 mL	2.5092 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.27 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.27 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.27 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Fursultiamine is a vitamin B₁ derivative, has anti-nociceptive and antineoplastic activity. Fursultiamine can be used for vitamin B_1 deficiency, osteoarthritis (OA) and cancer research^{[1][2]}.

REFERENCES

[1]. Kobayashi T, et al. Fursultiamine, a vitamin B1 derivative, enhances chondroprotective effects of glucosamine hydrochloride and chondroitin sulfate in rabbit experimental osteoarthritis. Inflamm Res. 2005 Jun;54(6):249-55.
[2]. Xiao-Yi Xiong, et al. Toll-Like Receptor 4/MyD88-Mediated Signaling of Hepcidin Expression Causing Brain Iron Accumulation, Oxidative Injury, and Cognitive Impairment After Intracerebral Hemorrhage. Circulation. 2016 Oct 4;134(14):1025-1038.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com