EGTA-AM

Cat. No.: HY-D0973 CAS No.: 99590-86-0 Molecular Formula: $C_{26}H_{40}N_2O_{18}$

Molecular Weight: 668.6

Target: **Biochemical Assay Reagents**

Pathway: Others

-20°C, protect from light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (149.57 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.4957 mL	7.4783 mL	14.9566 mL
	5 mM	0.2991 mL	1.4957 mL	2.9913 mL
	10 mM	0.1496 mL	0.7478 mL	1.4957 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (3.74 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (3.74 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (3.74 mM); Clear solution

BIOLOGICAL ACTIVITY

Description EGTA-AM is a membrane permeable form of EGTA, can be passively loaded into cells to generate intracellular EGTA; EGTA-AM is also a Ca²⁺ chelator with slow chelating dynamics.

In Vitro

EGTA-AM (50 μ M) markedly reduces the asynchronous excitatory postsynaptic currents (aEPSC) to 58.9 \pm 8.1% of the control level, but only reduces the synchronous excitatory postsynaptic currents (EPSCs), measured as charge transfer produced by the stimulation train^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nat Commun. 2021 Jan 28;12(1):662.
- Front Physiol. 05 January 2022.
- Research Square Preprint. 2024 Mar 13.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Li MJ, et al. Cholinergic and glutamatergic transmission at synapses between pedunculopotine tegmental nucleus axonal terminals and A7 catecholamine cell group noradrenergic neurons in the rat. Neuropharmacology. 2016 Nov;110(Pt A):237-50

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com