Product Data Sheet

Diltiazem

 Cat. No.:
 HY-B0632

 CAS No.:
 42399-41-7

 Molecular Formula:
 C22H26N2O4S

Molecular Weight: 414.52

Target: Calcium Channel

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro DMSO: 50 mg/mL (120.62 mM; Need ultrasonic)

H₂O: < 0.1 mg/mL (ultrasonic; warming; heat to 60°C) (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4124 mL	12.0621 mL	24.1243 mL
	5 mM	0.4825 mL	2.4124 mL	4.8249 mL
	10 mM	0.2412 mL	1.2062 mL	2.4124 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.5 mg/mL (6.03 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Diltiazem is an orally active L-type Ca ²⁺ channel blocker. Diltiazem shows antihypertensive and antiarrhythmic effects. Diltiazem can be used for the research of cardiac arrhythmia, hypertension, and angina pectoris ^{[1][2][3]} .
IC ₅₀ & Target	L-type calcium channel
In Vitro	Diltiazem (200 µM) elicits a use-dependent blockade that proceeded within a relatively small number of pulses ^[1] . Diltiazem reduces Ca ²⁺ influx by accelerating inactivation during action potentials, and that the use-dependent blockade is due to increases in the number of channels in a sustained closed state ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Diltiazem (100 mg/kg; p.o.; for 4 weeks) prevents aortic aneurysm formation in a blood pressure-independent manner ^[3] . Diltiazem limits aortic aneurysm formation in mice by a blood pressure-independent anti-inflammatory effect on monocytic

Diltiazem (2 mg/kg; i.v.) exhibits $T_{1/2}$ of 61.2 min, CL_{el} of 3.2 mL/min in rats^[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Male ApoE^{-/-} mice, angiotensin II induced aneurysms^[3] Animal Model: Dosage: 100 mg/kg Administration: Oral administration, in drinking water, for 4 weeks Result: Srongly reduced the vascular remodeling but also lowered the blood pressure. Rat (200-250 g)^[4] Animal Model: Dosage: 2 mg/kg (Pharmacokinetic Analysis) Administration: Intravenous injection Result: $T_{1/2}$ (61.2 min), CL_{el} (3.2 mL/min)

CUSTOMER VALIDATION

- Virology. 2020 Jan 2;539:38-48.
- Virology. 2020 Jan 2;539:38-48.
- J Cardiovasc Transl Res. 2023 Jan 30.
- Pharmacol Res Perspect. 2021 Oct;9(5):e00879.
- Pharmacol Res Perspect. 2020 Apr;8(2):e00575.

See more customer validations on www.MedChemExpress.com

cells^[3].

REFERENCES

- [1]. Yoshinari Niimi, et al. Diltiazem facilitates inactivation of single L-type calcium channels in guinea pig ventricular myocytes. Jpn Heart J. 2003 Nov;44(6):1005-14.
- [2]. S Lin Tang, et I. Structural Basis for Diltiazem Block of a Voltage-Gated Ca2+ Channel. Mol Pharmacol. 2019 Oct; 96(4): 485-492.
- [3]. Anja Mieth, et al. L-type calcium channel inhibitor diltiazem prevents aneurysm formation by blood pressure-independent anti-inflammatory effects. Hypertension. 2013 Dec;62(6):1098-104.
- [4]. S. J. Downing, et al. Diltiazem pharmacokinetics in the rat and relationship between its serum concentration and uterine and cardiovascular effects. Br J Pharmacol. 1987 Aug; 91(4): 735-745.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA