

Product Data Sheet

Diazoxide

Cat. No.: HY-B1140 CAS No.: 364-98-7 Molecular Formula: $C_8H_7ClN_2O_2S$ Molecular Weight: 230.67

Target: Potassium Channel; Autophagy

Pathway: Membrane Transporter/Ion Channel; Autophagy

Storage: 4°C, protect from light

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 35 mg/mL (151.73 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.3352 mL	21.6760 mL	43.3520 mL
	5 mM	0.8670 mL	4.3352 mL	8.6704 mL
	10 mM	0.4335 mL	2.1676 mL	4.3352 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 2.08 mg/mL (9.02 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (9.02 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Diazoxide (Sch-6783) is an ATP-sensitive potassium channel activator, has the potential for hyperinsulinism treatment.
In Vitro	Diazoxide (Sch-6783) has a number of physiological effects, including lowering the blood pressure and rectifying hypoglycemia. Diazoxide has powerful protective properties against cardiac ischemia ^[1] . Diazoxide (Sch-6783) could protect NSC-34 neurons against the main sources of neurodegenerative damage. Diazoxide increases Nrf2 nuclear translocation in NSC-34 motoneurons and prevents endogenous oxidative damage ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Diazoxide (Sch-6783) attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels ^[3] .

Treatment with Diazoxide (Sch-6783) in wild-type mice decreases intraocular pressure (IOP) by 21.5 \pm 3.2% with an absolute IOP reduction of 3.9 \pm 0.6 mm Hg^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [2]

Diazoxide is dissolved in DMSO to prepare 50 mM stock solution. NSC-34 cells are allowed to differentiate for 8 weeks under reduced serum conditions and then seeded in 24-well plates. Glutamate is dissolved in culture medium and added to cultures at concentration of 10 μ M for 24 h. Cell treatment with 100 μ M diazoxide starts 2 h before glutamate exposure. Cell viability is measured by the MTT assay^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [3][4]

Rats: Adult male Sprague-Dawley rats with induced cerebral ischemia (n=10 per group) receive an intraperitoneal injection of 0.1% DMSO (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n=5) undergoes sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) is determined. Brain cell apoptosis is assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex is determined by Western blotting and immunohistochemistry^[3].

Mouse: Diazoxide is prepared by diluting a 100 mM stock solution in 10% polyethoxylated castor oil in PBS. In C57BL/6 wild-type and Kir6.2 $^{(-/-)}$ mice, a 5 μ L drop of 5 mM diazoxide is topically administered to one eye of each mouse while the fellow control eye received vehicle (DMSO and 10% polyethoxylated castor oil in the same proportion as the treated eye). IOP is measured daily at 1 hour, 4 hours, and 23 hours following treatment. Treatment with diazoxide and vehicle is continued daily for 14 consecutive days^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Redox Biol. 15 October 2021, 102168.
- Cell Biol Int. 2020 Jun;44(6):1353-1362.
- Biological Sciences. 2020 Sep.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Coetzee WA, et al. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther. 2013 Nov;140(2):167-75.
- [2]. Virgili N, et al. K(ATP) channel opener diazoxide prevents neurodegeneration: a new mechanism of action viaantioxidative pathway activation. PLoS One. 2013 Sep 11;8(9):e75189.
- [3]. Wu H, et al. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels. Biomed Res Int. 2016;2016;1253842.
- [4]. Chowdhury UR, et al. ATP-sensitive potassium (K(ATP)) channel openers diazoxide and nicorandil lower intraocular pressure in vivo. Invest Ophthalmol Vis Sci. 2013 Jul 22;54(7):4892-9.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com