Inhibitors

D-Panthenol

Cat. No.: HY-B1391 CAS No.: 81-13-0 Molecular Formula: C₉H₁₉NO₄ Molecular Weight: 205.25

Target: **Endogenous Metabolite** Pathway: Metabolic Enzyme/Protease Storage: Pure form -20°C 3 years

> 4°C 2 years In solvent -80°C 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro Ethanol: 110 mg/mL (535.93 mM; Need ultrasonic)

DMSO: 33 mg/mL (160.78 mM; Need ultrasonic and warming)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	4.8721 mL	24.3605 mL	48.7211 mL
	5 mM	0.9744 mL	4.8721 mL	9.7442 mL
	10 mM	0.4872 mL	2.4361 mL	4.8721 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (10.13 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (10.13 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (10.13 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	D-Panthenol is the biologically-active alcohol of pantothenic acid, which leads to an elevation in the amount of coenzyme A in the cell. D-panthenol exhibits nephroprotective effect in AKI, promotes tissue repair and regeneration.
IC ₅₀ & Target	Human Endogenous Metabolite
In Vitro	D-panthenol exhibits neuroprotective activity against tBHP (0-100 μ M) and FESO ₄ (0.5 mM) induced oxidation in

mitochondria through inhibiting lipid peroxidation, thereby improves mitochondrial metabolism, reverses redox potential of the glutathione system and decreases the level of S-glutathionylated proteins^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

D-panthenol (200 mg/kg, i.p. for 7 days) enhances tolerance of kidney tissues against oxidative damage through limited lipid peroxidation and SOD activity in Rhabdomyolysis-Induced AKI in Wistar $mice^{[2]}$.

D-panthenol (200 mg/kg, i.p. for 7 days) exhibits nephroprotective effect through inhibiting inflammatory processes with decreased MPO activity and leukocyte infiltration in Rhabdomyolysis-Induced AKI in Wistar mice $^{[2]}$.

D-panthenol (4 mg as a spray, twice a day for 14 days) promotes wound healing through retaining the environment moisture, promoting tissue repair and regeneration in streptozotocin-induced diabetes mellitus C57BL/6 mice and db/db mice^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Rhabdomyolysis-Induced AKI in Wistar mice ^[2]	
Dosage:	200 mg/kg	
Administration:	intraperitoneal injection, 7 days	
Result:	Reduced leukocyten infiltration and MPO activity in kidney.	
Animal Model:	streptozotocin-induced DM C57BL/6 mice and db/db (T2D) mice ^[3]	
Dosage:	4 mg/kg	
Administration:	as a spray, twice a day for 14 days	
Result:	Induced leukocyte prevalence, promoted clearance of necrotic debris from the wound. Induced collagen production from day 10.	

REFERENCES

- [1]. Semenovich DS, et al., Protective Effect of D-Panthenol in Rhabdomyolysis-Induced Acute Kidney Injury. Int J Mol Sci. 2022 Oct 14;23(20):12273.
- [2]. linova E, et al., Cerium-Containing N-Acetyl-6-Aminohexanoic Acid Formulation Accelerates Wound Reparation in Diabetic Animals. Biomolecules. 2021 Jun 3;11(6):834.
- [3]. Semenovich DS, et al., Effects of Panthenol and N-Acetylcysteine on Changes in the Redox State of Brain Mitochondria under Oxidative Stress In Vitro. Antioxidants (Basel). 2021 Oct 27;10(11):1699.
- [4]. Oguz A, et al. Topical N-acetylcysteine improves wound healing comparable to dexpanthenol: an experimental study. Int Surg. 2015 Apr;100(4):656-61.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA