Screening Libraries

Proteins

D-Glucose-d₁

Cat. No.: HY-B0389S1 CAS No.: 56570-89-9 Molecular Formula: $C_6H_{11}DO_6$ Molecular Weight: 181.16

Endogenous Metabolite; Isotope-Labeled Compounds Target:

Pathway: Metabolic Enzyme/Protease; Others

Storage: Powder -20°C 3 years

> In solvent -80°C 6 months

> > -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 100 mg/mL (552.00 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	5.5200 mL	27.5999 mL	55.1998 mL
	5 mM	1.1040 mL	5.5200 mL	11.0400 mL
	10 mM	0.5520 mL	2.7600 mL	5.5200 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	D-Glucose-d is the deuterium labeled D-Glucose. D-Glucose (Glucose), a monosaccharide, is an important carbohydrate in biology. D-Glucose is a carbohydrate sweetener and critical components of the general metabolism, and serve as critical signaling molec
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019 Feb;53(2):211-216.

[2]. Jin Jiaojiao, et al. D-glucose, D-galactose, and D-lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode. Food Chem. 2015 May 15;175:485-93.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com