D-Glucose

Cat. No.: HY-B0389 CAS No.: 50-99-7 Molecular Formula: $C_6H_{12}O_6$ Molecular Weight: 180.16

Target: **Endogenous Metabolite** Pathway: Metabolic Enzyme/Protease

Storage: Powder -20°C 3 years 4°C 2 years

In solvent -80°C 6 months -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro $H_2O : \ge 50 \text{ mg/mL } (277.53 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	5.5506 mL	27.7531 mL	55.5062 mL
	5 mM	1.1101 mL	5.5506 mL	11.1012 mL
	10 mM	0.5551 mL	2.7753 mL	5.5506 mL

Please refer to the solubility information to select the appropriate solvent.

1. Add each solvent one by one: PBS In Vivo

Solubility: 100 mg/mL (555.06 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	D-Glucose is the naturally occurring form of glucose and the most abundant monosaccharide. D-Glucose is a critical components of the general metabolism, and serve as critical signaling molecules in relation to both cellular metabolic status and biotic or abiotic stress response $[1][2][3]$.	
IC ₅₀ & Target	Microbial Metabolite Human Endogenous Metabolite	
In Vitro	D-Glucose (25-150 mM, 20min) increases the release of 5-Hydroxytryptamine from human BON cells dose-dependently [3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	D-Glucose (250, 500, 750 mg/kg, i.v., acute administration) protects rats' isletβcells from Alloxan induced diabetes ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

Animal Model:	Male rats (Charles River strain) with alloxan induced diabetes ^[2]	
Dosage:	250, 500, 750 mg/kg	
Administration:	Intravenous injection (i.v.)	
Result:	Demonstrated slight to moderate degranulation of isletβcells and only minimal or absent evidence of injury, while β cell necrosis was noted in those receiving only alloxan.	

CUSTOMER VALIDATION

- ACS Nano. 2023 Sep 15.
- Nat Protoc. 2021 Jan;16(1):405-430.
- Autophagy. 2022 Nov 30.
- Cancer Lett. 2022 Sep 20;215918.
- Cell Commun Signal. 2022 Oct 27;20(1):168.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Jin Jiaojiao, et al. D-glucose, D-galactose, and D-lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode. Food Chem. 2015 May 15;175:485-93.

[2]. Rossini AA, et al. Beta cell protection to alloxan necrosis by anomers of D-glucose. Science. 1974;183(4123):424.

[3]. Kim M, et al. D-glucose releases 5-hydroxytryptamine from human BON cells as a model of enterochromaffin cells. Gastroenterology. 2001 Dec;121(6):1400-6.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA