D-Carnitine hydrochloride

MedChemExpress

Cat. No.:	HY-B2246A	
CAS No.:	10017-44-4	
Molecular Formula:	C ₇ H ₁₆ ClNO ₃	I QH Q
Molecular Weight:	197.66	\searrow_{N^+}
Target:	Endogenous Metabolite	
Pathway:	Metabolic Enzyme/Protease	CI
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
		1 mM	5.0592 mL	25.2960 mL	50.5919 mL
		5 mM	1.0118 mL	5.0592 mL	10.1184 mL
		10 mM	0.5059 mL	2.5296 mL	5.0592 mL

Description	D-Carnitine hydrochloride ((S)-Carnitine Hydrochloride) has been used to study sulfur factor transporter SLC22A4 and carnitine transporter SLC22A5 in ergot. D-Carnitine hydrochloride is also used to get palmitic acid into mitochondria ^{[1][2]} .		
IC ₅₀ & Target	Human Endogenous Metabolite		
In Vitro	When expressed in human embryonic kidney (HEK)293 cells, hOCTN2 (SLC22A5) shows low but significant stereospecific transport activity: D-carnitine is transported with lower affinity (K _m =10.9 μM) than the L-isomer (K _m =4.3 μM) ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

REFERENCES

[1]. Horvath GA, et al. Newborn screening for MCAD deficiency: experience of the first three years in British Columbia, Canada. Can J Public Health. 2008 Jul-Aug;99(4):276-80.

[2]. Leenders JJ, et al. Regulation of cardiac gene expression by KLF15, a repressor of myocardin activity. J Biol Chem. 2010 Aug 27;285(35):27449-56.

[3]. Ohashi R, et al. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999 Nov;291(2):778-84.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA