Proteins

Clopamide

Cat. No.: HY-B1477 CAS No.: 636-54-4

Molecular Formula: $\mathsf{C}_{14}\mathsf{H}_{20}\mathsf{CIN}_3\mathsf{O}_3\mathsf{S}$

Molecular Weight: 345.84

Target: Sodium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: Powder -20°C 3 years

> In solvent -80°C 6 months

> > -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (289.15 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8915 mL	14.4576 mL	28.9151 mL
	5 mM	0.5783 mL	2.8915 mL	5.7830 mL
	10 mM	0.2892 mL	1.4458 mL	2.8915 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.23 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.5 mg/mL (7.23 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.23 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Clopamide is an orally active thiazide-like diuretic agent that inhibits the sodium-coupled chloride cotransporter SLC12A3. Clopamide has the potential for hypertension and cardiac failure research $^{[1][2]}$.
In Vitro	Clopamide is actively secreted by renal tubular cells and the True Tubular Excretion Fraction (TTEF) value is $10\%^{[3]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	The venoconstrictor response to bradykinin is attenuated after oral administration of Clopamide (0.5 mg/kg), and by concomitant local infusion of cyclosporine-A (1-10 μ g/min) in conscious dogs ^[4] .

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• J Pharmaceut Biomed. 2020, 113870.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. J J McNeil, et al. Clopamide: plasma concentrations and diuretic effect in humans. Clin Pharmacol Ther. 1987 Sep;42(3):299-304.
- [2]. Yoshiteru Noutoshi, et al. Diuretics prime plant immunity in Arabidopsis thaliana. PLoS One. 2012;7(10):e48443.
- [3]. B Odlind, et al. Renal tubular secretion and effects of chlorothiazide, hydrochlorothiazide and clopamide: a study in the avian kidney. Acta Pharmacol Toxicol (Copenh). 1982 Sep;51(3):187-97.
- [4]. E Müller-Schweinitzer, et al. Interaction of cyclosporine-A with the renin-angiotensin system in canine veins. Naunyn Schmiedebergs Arch Pharmacol. 1989 Aug;340(2):252-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA