Screening Libraries

Citalopram hydrobromide

Cat. No.: HY-B1287 CAS No.: 59729-32-7 Molecular Formula: $C_{20}H_{22}BrFN_{2}O$

Target: Serotonin Transporter; Autophagy Pathway: Neuronal Signaling; Autophagy

405.3

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

Molecular Weight:

DMSO: $\geq 38 \text{ mg/mL} (93.76 \text{ mM})$

H₂O: 10 mg/mL (24.67 mM; Need ultrasonic)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4673 mL	12.3365 mL	24.6731 mL
	5 mM	0.4935 mL	2.4673 mL	4.9346 mL
	10 mM	0.2467 mL	1.2337 mL	2.4673 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS
 - Solubility: 110 mg/mL (271.40 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.17 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Citalopram hydrobromide is a selective serotonin reuptake inhibitor (SSRI). Citalopram hydrobromide inhibits 5-HT uptake into synaptosomes with an IC_{50} of 1.8 nM. Citalopram hydrobromideinhibits the 5-HT uptake in rabbit blood platelets with an IC₅₀ of 14 nM. Antidepressant effect^[1].

In Vitro

Citalopram 25-150 μM) shows a concentration-dependent cytotoxicity on the viability of rat B104, human SH-SY5Y, IMR32 and Kelly neuroblastoma cell lines and human primary Schwann cells (HSC) $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[2]

Cell Line:	Rat B104, human SH-SY5Y, IMR32 and Kelly neuroblastoma cells	
Concentration:	50, 100, 125, 150 μM for B104 cells 25, 50, 100, 125 μM for SH-SY5Y cells 25, 50, 100, 125, 150 μM for Kelly cells	
	25, 50, 100, 125 μM for IMR32 cells 50, 100, 125, 150 μM for HSCs	
Incubation Time:	24 h ours	
Result:	Significantly decreased B104 cell viability, 61%, 33% and 11% at respectively 100, 125 and 150 μ M in B104 cell line. Drastically decreased SH-SY5Y cell viability, 17%, 1% at respectively 100 and 125 μ M in SH-SY5Y cell line. Significantly decreased Kelly cell viability, 64%, 9% and 0% at respectively 100, 125 and	
	150 μ M in Kelly cell line. Drastically decreased IMR32 cell viability, 36%, 1% and 0% at respectively 50, 100 and 125 μ M in IMR32 cell line.	

In Vivo

Acute administration of Citalopram (1-10 mg/kg, i.p. 1 h before an elevated plus-maze test) to Spontaneously Hypertensive rats (SHRs), Lewis (LEW) rats, and Wistar-Kyoto (WKY) rats, i.e., rat strains differing for their emotionality, promotes anxiety, and/or hypoactivity, except in WKY rats. In the three strains, such a pretreatment increased central 5-HT levels and/or decreased 5-hydroxyindoleacetic acid levels^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male rats from the SHR, LEW, and WKY strains, aged 6–8 weeks $^{[3]}$	
Dosage:	1, 3.3, or 10 mg/kg	
Administration:	Injected i.p.	
Result:	Increased significantly 5-HT in SHRs and WKY rats, and decreased 5-HIAA in all strains, in either a dose-dependent (LEW and WKY rats) or a dose-independent (SHRs) manner.	

CUSTOMER VALIDATION

- Comput Struct Biotechnol J. 2023 Jul 7, 21, 3490-3502.
- Eur J Pharmacol. 2018 Sep 27;841:57-66.
- Neurochem Int. 2019 Dec;131:104552.
- J Clin Psychopharmacol. 2021 Jun 11.
- Pharmacol Res Perspect. 2020 Apr;8(2):e00575.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. J Hyttel. Citalopram—pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuropsychopharmacol Biol Psychiatry. 1982;6(3):277-95.

[2]. Laurent Sakka, et al. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation. Oncotarget. 2017 Jun 27;8(26):42789-

42807.	
[2] E Pollier et al Seretonin rou	ptake inhibition by citalopram in rat strains differing for their emotionality. Neuropsychopharmacology. 2000 Jan;22(1):64-76.
[5]. F Pollier, et al. Serotomin reu	ptake inflibition by citalopiani in rat strains differing for their emotionality. Neuropsychophannacology, 2000 Jan,22(1).04-76.
	Caution: Product has not been fully validated for medical applications. For research use only.
	Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
	Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com