Product Data Sheet

Ciprofloxacin monohydrochloride

Cat. No.: HY-B0356A CAS No.: 93107-08-5

Molecular Formula: $C_{17}H_{19}CIFN_3O_3$

Molecular Weight: 367.8

Bacterial; Antibiotic; Topoisomerase; Apoptosis; Mitochondrial Metabolism; Reactive Target:

Oxygen Species

Anti-infection; Cell Cycle/DNA Damage; Apoptosis; Metabolic Enzyme/Protease; Pathway:

Immunology/Inflammation; NF-κB

4°C, sealed storage, away from moisture and light Storage:

* The compound is unstable in solutions, freshly prepared is recommended.

SOLVENT & SOLUBILITY

In Vitro H₂O: 12.5 mg/mL (33.99 mM; Need ultrasonic)

DMSO: 5 mg/mL (13.59 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7189 mL	13.5943 mL	27.1887 mL
	5 mM	0.5438 mL	2.7189 mL	5.4377 mL
	10 mM	0.2719 mL	1.3594 mL	2.7189 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 - Solubility: ≥ 0.5 mg/mL (1.36 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.5 mg/mL (1.36 mM); Clear solution

BIOLOGICAL ACTIVITY

Ciprofloxacin (Bay-09867) monohydrochloride is a potent, orally active topoisomerase IV inhibitor. Ciprofloxacin Description monohydrochloride induces mitochondrial DNA and nuclear DNA damage and lead to mitochondrial dysfunction, ROS production. Ciprofloxacin monohydrochloride has anti-proliferative activity and induces apoptosis. Ciprofloxacin monohydrochloride is a fluoroquinolone antibiotic, exhibiting potent antibacterial activity^{[1][2][3][4]}.

IC₅₀ & Target Quinolone Ciprofloxacin (Bay-09867) monohydrochloride (5-50 µg/mL; 0-24 h; tendon cells) inhibits cell proliferation and causes cell In Vitro cycle arrest at the G2/M phase^[1].

?Ciprofloxacin (Bay-09867) monohydrochloride shows potent activity against Y. pestis and B. anthracis with MIC₉₀ of 0.03 μ g/mL and 0.12 μ g/mL, respectively^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	Tendon cells	
Concentration:	5, 10, 20 and 50 μg/mL	
Incubation Time:	24 hours	
Result:	Decreased the cellularity of tendon cells.	
Cell Cycle Analysis ^[1]		
Cell Line:	Tendon cells	
Concentration:	50 μg/mL	
Incubation Time:	24 hours	
Result:	Arrested cell cycle at the G2/M phase and inhibited cell division in tendon cells.	
Western Blot Analysis ^[1]		
Cell Line:	Tendon cells	
Concentration:	50 μg/mL	
Incubation Time:	0, 6, 12, 17 and 24 hours	
Result:	Down-regulated the expression of CDK-1 and cyclin B protein and mRNA. Up-regulated the expression of PLK-1 protein.	

In Vivo

Ciprofloxacin (Bay-09867) monohydrochloride (30 mg/kg; i.p.; for 24 hours; BALB/c mice) has protection against Y. pestis in murine model of pneumonic plague^[3].

?Ciprofloxacin (Bay-09867) monohydrochloride (100 mg/kg; i.g.; daily, for 4 weeks; C57BL/6J mice) accelerates aortic root enlargement and increases the incidence of aortic dissection and rupture by decreases LOX level and increases MMP levels and activity in the aortic wall^[4].

?Ciprofloxacin (Bay-09867) monohydrochloride (100 mg/kg; i.g.; daily, for 4 weeks; C57BL/6J mice) induces DNA damage and release of DNA to the cytosol, mitochondrial dysfunction, and activation of cytosolic DNA sensor signaling. Ciprofloxacin lactate increases apoptosis and necroptosis in the aortic wall^[4].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Animal Model:	BALB/c mice ^[3]	
Dosage:	30 mg/kg	
Administration:	Intraperitoneal injection; for 24 hours	
Result:	Reduced the lung bacterial load in murine model of pneumonic plague.	
Animal Model:	C57BL/6J mice ^[4]	
Dosage:	100 mg/kg	

Page 2 of 3

Administration:	Oral gavage; daily, for 4 weeks	
Result:	Had aortic destruction that was accompanied by decreased LOX expression and increased MMP expression and activity.	
Animal Model:	C57BL/6J mice $^{[4]}$	
Dosage:	100 mg/kg	
Administration:	Oral gavage; daily, for 4 weeks	
Result:	Caused mitochondrial DNA and nuclear DNA damage, leading to mitochondrial dysfunction and ROS production. Increased apoptosis and necroptosis in the aortic wall.	

CUSTOMER VALIDATION

- Nat Commun. 2022 Mar 2;13(1):1116.
- Adv Sci (Weinh). 2020 Jul 21;7(17):2001374.
- Water Res. 2023 May 21, 120110.
- Genome Biol. 2023 Apr 30;24(1):98.
- EBioMedicine. 2022 Apr;78:103943.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Tsai WC, et, al. Ciprofloxacin-mediated cell proliferation inhibition and G2/M cell cycle arrest in rat tendon cells. Arthritis Rheum. 2008 Jun;58(6):1657-63.
- [2]. Steenbergen J, et, al. In Vitro and In Vivo Activity of Omadacycline against Two Biothreat Pathogens, Bacillus anthracis and Yersinia pestis. Antimicrob Agents Chemother. 2017 Apr 24;61(5):e02434-16.
- [3]. Hamblin KA, et, al. Inhaled Liposomal Ciprofloxacin Protects against a Lethal Infection in a Murine Model of Pneumonic Plague. Front Microbiol. 2017 Feb 6;8:91.
- [4]. LeMaire SA, et, al. Effect of Ciprofloxacin on Susceptibility to Aortic Dissection and Rupture in Mice. JAMA Surg. 2018 Sep 1;153(9):e181804.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA