Product Data Sheet

Carvedilol

Cat. No.: HY-B0006 72956-09-3 CAS No.: Molecular Formula: $C_{24}H_{26}N_2O_4$ Molecular Weight: 406.47

Adrenergic Receptor; Autophagy; Bacterial Target:

Pathway: GPCR/G Protein; Neuronal Signaling; Autophagy; Anti-infection

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 1 year

-20°C 6 months

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (246.02 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4602 mL	12.3010 mL	24.6021 mL
	5 mM	0.4920 mL	2.4602 mL	4.9204 mL
	10 mM	0.2460 mL	1.2301 mL	2.4602 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.15 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (6.15 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.15 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Carvedilol (BM 14190) is a non-selective β/α -1 blocker ^[1] . Carvedilol inhibits lipid peroxidation in a dose-dependent manner with an IC ₅₀ of 5 μ M. Carvedilol is a multiple action antihypertensive agent with potential use in angina and congestive heart failure ^[2] . Carvedilol is an autophagy inducer that inhibits the NLRP3 inflammasome ^[3] .
IC & Target	$\beta/g-1$ adrenergic recentor ^[1]

IC50: 5 μM (lipid peroxidation)^[2] Autophagy^[3]

In Vitro

Superoxide generation by activated human neutrophils in vitro is inhibited by Carvedilol with an IC₅₀ of 28 μ M. Carvedilol is shown to scavenge oxygen free radicals in a cell-free system with an IC₅₀ of 25 μ M^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Rep. 2023 Mar 20;42(3):112275.
- Free Radic Biol Med. 2023 Aug, 139, 108897.
- J Pathol. 2023 Feb 24.
- Cells. 2022, 11(17), 2633.
- ACS Omega. August 8, 2022.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Eggertsen R, et al. Acute haemodynamic effects of carvedilol (BM 14190), a new combined beta-adrenoceptor blocker and precapillary vasodilating agent, in hypertensive patients. Eur J Clin Pharmacol. 1984;27(1):19-22.

[2]. Feuerstein GZ, et al. Myocardial protection by the novel vasodilating beta-blocker, carvedilol: potential relevance of anti-oxidant activity. J Hypertens Suppl. 1993 Jun;11(4):S41-8.

[3]. Wong WT, et al. Repositioning of the β -Blocker Carvedilol as a Novel Autophagy Inducer That Inhibits the NLRP3 Inflammasome. Front Immunol. 2018 Aug 22;9:1920.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA