Bethanechol

Cat. No.: HY-B0406 CAS No.: 674-38-4 Molecular Formula: $C_7H_{17}N_2O_2$ Molecular Weight: 161.22 Target: mAChR

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

$$H_2N$$
 O N^+

Product Data Sheet

BIOLOGICAL ACTIVITY

Description	Bethanechol (Carbamyl-β-methylcholine), a parasympathomimetic agent, is a mAChR agonist that exerts its effects via directly stimulating the mAChR (M1, M2, M3, M4, and M5) of the parasympathetic nervous system ^[1] .				
IC ₅₀ & Target	mAChR1	mAChR3	mAChR4	mAChR5	
In Vitro	Bethanechol (0.3-300 μ M) significantly reduces ileal pacemaker potentials ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	Bethanechol (2-12 mg/kg; i.p.) induces drinking and increased urine output of rats in a dose-dependence on the model of th				
	Animal Model: Dosage:	Female rats of the Blue Spruce Farms (Sprague-Dawley) (280-330 g) ^[4] 2 mg/kg, 4 mg/kg, 8 mg/kg, 12 mg/kg			
	Administration:	Intraperitoneal injection			
	Result:	Increased water intake during the first hr in a dose-dependent fashion up to the highest dose administered (12 mg/kg).			

CUSTOMER VALIDATION

• Research Square Preprint. 2022 Mar.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Julia Yuen Hang Liu, et al. Acetylcholine exerts inhibitory and excitatory actions on mouse ileal pacemaker activity: role of muscarinic versus nicotinic receptors. Am J Physiol Gastrointest Liver Physiol. 2020 Jul 1;319(1):G97-G107.

[2]. M J Fregly, et al. Bethanechol-induced water intake in rats: possible mechanisms of induction. Pharmacol Biochem Behav. 1982 Oct;17(4):727-32. [3]. Inderbir S. Padda, et al. Bethanechol. Treasure Island (FL): StatPearls Publishing; 2020 Jan						
	Caution: Product has not been fully validated for medical applications. For research use only.					
Tel: 609-228-6898 Add		E-mail: tech@MedChemExpress.com				
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA						

Page 2 of 2 www.MedChemExpress.com