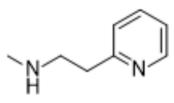


Product Data Sheet

Betahistine


Cat. No.:HY-B0524CAS No.:5638-76-6Molecular Formula: $C_8H_{12}N_2$ Molecular Weight:136.19

Target: Histamine Receptor

Pathway: GPCR/G Protein; Immunology/Inflammation; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (734.27 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	7.3427 mL	36.7134 mL	73.4268 mL
	5 mM	1.4685 mL	7.3427 mL	14.6854 mL
	10 mM	0.7343 mL	3.6713 mL	7.3427 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (18.36 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (18.36 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (18.36 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Betahistine is an orally active histamine H1 receptor agonist and a H3 receptor antagonist ^[1] . Betahistine is used for the study of rheumatoid arthritis $(RA)^{[3]}$.		
IC ₅₀ & Target	H ₁ Receptor	H ₃ receptor	
In Vitro	Betahistine (0-10 μ M) inhibits [125 I]iodoproxyfan binding to membranes of CHO (rH $_{3(445)}$ R) and CHO (hH $_{3(445)}$ R) cells with IC $_{50}$ values of 1.9 μ M and 3.3 μ M, respectively. Lead to K $_{i}$ values of 1.4 μ M and 2.5 μ M, respectively [2]. Betahistine (0-10 μ M) has a regulating function on cAMP formation in CHO (rH $_{3(445)}$ R), CHO (rH $_{3(413)}$ R), and CHO (hH $_{3(445)}$ R) cells. At low concentrations, betahistine behaves an apparent inverse agonist, and progressively enhances cAMP formation		

with EC $_{50}$ values of 0.1 nM, 0.05 nM and 0.3 nM, respectively. In contrast, at concentrations higher than 10 nM, betahistine inhibits cAMP formation with an EC $_{50}$ value of 0.1 μ M in CHO (rH $_{3(445)}$ R) and full agonist activity^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Betahistine (intraperitoneal or oral administration; 0.1-30 mg/kg; single dose) with acute administration has increased telemethylhistamine (t-MeHA) levels with an ED $_{50}$ of 0.4 mg/kg, indicating the inverse agonism. Besides, after acute oral administration, it increases t-MeHA levels with an ED $_{50}$ of 2 mg/kg in male Swissmice^[2].

Betahistine (oral adminstration; 1 and 5 mg/kg; daily for 3 weeks) attenuates the severity of arthritis and reduces the levels of pro-inflammatory cytokines in the paw tissues of CIA mice^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Collagen-induced arthritis (CIA) DBA/1 male mouse model ^[3]	
Dosage:	1 mg/kg; 5mg/kg	
Administration:	Oral adminstration; day 21 to day 42 after a 21-day CIA induction	
Result:	Ameliorated mouse CIA by decreasing joint destruction.	

REFERENCES

- [1]. Poyurovsky M, et al. The effect of betahistine, a histamine H1 receptor agonist/H3 antagonist, on olanzapine-induced weight gain in first-episode schizophrenia patients. Int Clin Psychopharmacol. 2005 Mar;20(2):101-3.
- [2]. Gbahou F, et al. Effects of betahistine at histamine H3 receptors: mixed inverse agonism/agonism in vitro and partial inverse agonism in vivo. J Pharmacol Exp Ther. 2010 Sep 1;334(3):945-54.
- [3]. Tang KT, et al. Betahistine attenuates murine collagen-induced arthritis by suppressing both inflammatory and Th17 cell responses.Int Immunopharmacol. 2016 Oct;39:236-245.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA