Product Data Sheet

Acetylcholine-d₁₆ bromide

Cat. No.: HY-B0282AS3 CAS No.: 347841-43-4 Molecular Formula: C₇D₁₆BrNO₂ Molecular Weight: 242.21

nAChR; Calcium Channel; Endogenous Metabolite; Isotope-Labeled Compounds Target:

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling; Metabolic

Enzyme/Protease; Others

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

H2O: 250 mg/mL (1032.16 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.1286 mL	20.6432 mL	41.2865 mL
	5 mM	0.8257 mL	4.1286 mL	8.2573 mL
	10 mM	0.4129 mL	2.0643 mL	4.1286 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Acetylcholine-d ₁₆ (bromide) is the deuterium labeled Acetylcholine bromide[1].	
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com