(-)-Huperzine A

Cat. No.:	HY-17387			
CAS No.:	102518-79-6			
Molecular Formula:	C ₁₅ H ₁₈ N ₂ O			
Molecular Weight:	242.32			
Target:	Cholinesterase (ChE); Apoptosis; iGluR			
Pathway:	Neuronal Signaling; Apoptosis; Membrane Transporter/Ion Channel			
Storage:	Powder	-20°C	3 years	
		4°C	2 years	
	In solvent	-80°C	2 years	
		-20°C	1 year	

SOLVENT & SOLUBILITY

In Vitro	DMSO : ≥ 100 mg/mL (412.68 mM) * "≥" means soluble, but saturation unknown.						
		Solvent Mass Concentration	1 mg	5 mg	10 mg		
	Preparing Stock Solutions	1 mM	4.1268 mL	20.6339 mL	41.2677 mL		
		5 mM	0.8254 mL	4.1268 mL	8.2535 mL		
		10 mM	0.4127 mL	2.0634 mL	4.1268 mL		
	Please refer to the solubility information to select the appropriate solvent.						
In Vivo	1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (10.32 mM); Clear solution						
	2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (10.32 mM); Clear solution						
	3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (10.32 mM); Clear solution						

BIOLOGICAL ACTIVITY Description (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC₅₀ of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer's disease^{[1][2][3][4][5]}. IC₅₀ & Target AChE NMDA Receptor

RedChemExpress

Product Data Sheet

In Vitro	(-)-Huperzine A (1 μM; 2 hours) attenuates Aβ23-35 (20 μM)-induced neuronal injury ^[2] . (-)-Huperzine A (100 μM) reversibly inhibits the NMDA-induced current (IC ₅₀ =126 μM) in whole-cell voltage-clamp recording in CA1 pyramidal neurons acutely dissociated from rat hippocampus ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
In Vivo	(-)-Huperzine A (0.1-0.2 mg, induced by i.c.v. infusion of MCE has not independently Animal Model: Dosage: Administration: Result:	 /kg; i.p.; daily; for 12 days) can alleviate the cognitive dysfunction and neuronal degeneration f beta-amyloid protein-(1-40) in rats^[5]. y confirmed the accuracy of these methods. They are for reference only. Male Sprague-Dawley rats (220-280 g)^[5] 0.1 mg/kg, 0.2 mg/kg Intraperitoneal injection, daily, for 12 days Partly reversed the down-regulation of anti-apoptotic Bcl-2 and the up-regulation of pro-apoptotic Bax and P53 proteins and reduced the apoptosis that normally followed b-amyloid injection; alleviated the cognitive dysfunction induced by b-amyloid protein-(1-40). 		
	Animal Model: Dosage: Administration: Result:	Male Sprague-Dawley rats (220-280 g) ^[5] 0.1 mg/kg, 0.2 mg/kg Intraperitoneal injection, daily, for 12 days Partly reversed the down-regulation of anti-apoptotic Bcl-2 and the up-regulation of pro- apoptotic Bax and P53 proteins and reduced the apoptosis that normally followed b- amyloid injection; alleviated the cognitive dysfunction induced by b-amyloid protein-(1- 40).		

CUSTOMER VALIDATION

- Cell Metab. 2022 Feb 7;34(3):424-440.e7.
- Aging (Albany NY). 2022 Oct 12;14(19):8077-8094.
- bioRxiv. 2023 Jun 3.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. MA Xiao-Chao, XIN Jian, WANG Hai-Xue, et al. Acute effects of huperzine A and tacrine on rat liver. Acta Pharmacol ogica Sinica, 2003, 24(3):247-250.

[2]. Rui Wang, et al. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin. 2006 Jan;27(1):1-26.

[3]. J M Zhang, et al. Huperzine A, a nootropic alkaloid, inhibits N-methyl-D-aspartate-induced current in rat dissociated hippocampal neurons. Neuroscience. 2001;105(3):663-9

[4]. Maung Kyaw Moe Tun, et al. The pharmacology and therapeutic potential of (-)-huperzine A. J Exp Pharmacol. 2012; 4: 113–123.

[5]. R Wang, et al. Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by beta-amyloid protein-(1-40) in rat. Eur J Pharmacol. 2001 Jun 15;421(3):149-56.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA