MCE MedChemExpress

Ziprasidone hydrochloride monohydrate

Cat. No.: HY-17407 **CAS No.:** 138982-67-9

Molecular Formula: $C_{21}H_{24}Cl_2N_4O_2S$

Molecular Weight: 467.41

Target: 5-HT Receptor; Dopamine Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (53.49 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1394 mL	10.6972 mL	21.3945 mL
	5 mM	0.4279 mL	2.1394 mL	4.2789 mL
	10 mM	0.2139 mL	1.0697 mL	2.1394 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.35 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: 2.5 mg/mL (5.35 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	Ziprasidone (CP-88059) hydrochloride monohydrate is an orally active combined 5-HT and dopamine receptor antagonist ^[1] . Ziprasidone hydrochloride monohydrate has affinities for Rat D ₂ (K_i =4.8 nM), 5-HT _{2A} (K_i =0.42 nM) and 5-HT _{1A} (K_i =3.4 nM) ^[1] .		
IC ₅₀ & Target	Rat 5-HT _{2A} 0.42 nM (Ki)	Rat 5-HT _{1A} Receptor 3.4 nM (Ki)	Rat D ₂ Receptor 4.8 nM (Ki)
In Vitro	Ziprasidone hydrochloride monohydrate (0-500 nM, 150 seconds) blocks wild-type hERG current ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay ^[2]		

Cell Line:	HEK-293 cells
Concentration:	0-500 nM
Incubation Time:	150 seconds
Result:	Blocked wild-type hERG current in a voltage- and concentration-dependent manner (IC $_{50}$ = 120 nm).

In Vivo

Ziprasidone hydrochloride monohydrate (oral gavage; 20 mg/kg; once daily; 7 weeks) results in weight loss, low level physical activity, high resting energy expenditure and greater capacity for thermogenesis when subjected to cold^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Eight-week-old female Sprague-Dawley rats weighing 200 to 250 g ^[3]		
Dosage:	20 mg/kg		
Administration:	Oral gavage; 20 mg/kg; once daily; 7 weeks		
Result:	Gained significantly less weight ($P = 0.031$), had a lower level of physical activity ($P = 0.016$), showed a higher resting energy expenditure ($P < 0.001$), and displayed a greater capacity for thermogenesis when subjected to cold ($P < 0.001$).		

CUSTOMER VALIDATION

• Research Square Preprint. 2021 Jul.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Zhi Su, et al. Block of hERG channel by ziprasidone: biophysical properties and molecular determinants. Biochem Pharmacol. 2006 Jan 12;71(3):278-86.
- [2]. Subin Park, et al. The effect of ziprasidone on body weight and energy expenditure in female rats. Metabolism. 2012 Jun;61(6):787-93.
- $[3]. \ Rollema\ H, et\ al.\ 5-HT (1A)\ receptor\ activation\ contributes\ to\ ziprasidone-induced\ dopamine\ release\ in\ the\ rat\ prefrontal\ cortex.\ Biol\ Psychiatry.\ 2000; 48(3):229-237.$

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com