Proteins

Voxelotor

Cat. No.: HY-18681 CAS No.: 1446321-46-5 Molecular Formula: $C_{19}H_{19}N_3O_3$

337.37 Molecular Weight: Target: Others Pathway: Others

4°C, stored under nitrogen Storage:

* In solvent: -80°C, 1 year; -20°C, 6 months (stored under nitrogen)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (296.41 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.9641 mL	14.8205 mL	29.6410 mL
	5 mM	0.5928 mL	2.9641 mL	5.9282 mL
	10 mM	0.2964 mL	1.4821 mL	2.9641 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: ≥ 2.5 mg/mL (7.41 mM); Clear solution
- 2. Add each solvent one by one: 5% DMSO >> 95% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.41 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.17 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (6.17 mM); Clear solution
- 5. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.17 mM); Clear solution
- 6. Add each solvent one by one: 1% DMSO >> 99% saline Solubility: 0.5 mg/mL (1.48 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

Voxelotor (GBT 440) is a potent inhibitor of haemoglobin S (HbS) polymerization. Voxelotor has the potential for sickle cell disease (SCD) treatment [1].

IC ₅₀ & Target	$HbS\ polymerization^{[1]}$		
In Vitro	Voxelotor (GBT440) binds to the N-terminal a chain of haemoglobin (Hb), increases haemoglobin S (HbS) affinity for oxygen, delays in vitro HbS polymerization and prevents sickling of red blood cells (RBCs) ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	Voxelotor (GBT440; 100-150 mg/kg; administered twice a day by oral gavage for 9-12 days) reduces ex vivo sickling and prolongs red blood cells (RBCs) half-life in a murine model of sickle cell disease (SCD) ^[1] . ?Voxelotor shows $T_{1/2}$ s of 11.7, 19.1±1.5, 66.0±11, 28.8±4.0 hours for mouse (70 mg/kg; i.v.), rat (1.6 mg/kg; i.v.), dog (1 mg/kg; i.v.), and momkey (1 mg/kg; i.v.), respectively ^[1] . ?Voxelotor shows C_{max} s of 81.9, 71.2±6.0, 5.56±1.6, and 25.2±5.5 µg/mL for mouse (30 mg/kg; p.o.), rat (7.2 mg/kg; p.o.), dog (2.5 mg/kg; p.o.), and momkey (4.25 mg/kg; p.o.), respectively ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	HbSS Townes knock-in sickle mice (SS mice) $^{[1]}$	
	Dosage:	100 and 150 mg/kg	
	Administration:	Oral administration; twice a day; for 9-12 days	
	Result:	Reduced haemolysis.	
	Animal Model:	C57BL/6J mice, Sprague-Dawley rats, Beagle dogs and Cynomolgus monkeys ^[1]	
	Dosage:	70, 1.6, 1 and 1 mg/kg for mice, rats, dogs and monkeys, respectively 30, 7.2, 2.5 and 4.25 mg/kg for mice, rats, dogs and monkeys, respectively	
	Administration:	Intravenous (IV: 70, 16, 1 and 1 mg/kg, respectively) Oral (PO: 30, 72, 25 and 43 mg/kg, respectively)	
	Result:	$T_{1/2} sof 11.7, 19.1\pm1.5, 66.0\pm11, 28.8\pm4.0 \ hours for mouse (70 \ mg/kg; i.v.), rat (1.6 \ mg/kg; i.v.), dog (1 \ mg/kg; i.v.), and momkey (1 \ mg/kg; i.v.), respectively. \\ C_{max} sof 81.9, 71.2\pm6.0, 5.56\pm1.6, and 25.2\pm5.5 \ \mug/mL for mouse (30 \ mg/kg; p.o.), rat (7.2 \ mg/kg; p.o.), dog (2.5 \ mg/kg; p.o.), and momkey (4.25 \ mg/kg; p.o.), respectively.$	

CUSTOMER VALIDATION

- Am J Hematol. 2019 May;94(5):575-584.
- Pharmaceutics. 2021, 13(9), 1388.
- Sci Rep. 2020 Nov 20;10(1):20277.
- Am J Clin Pathol. 2020 Oct 13;154(5):627-634.
- J Pharm Biomed Anal. 2022: 115152.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

 $[1]. \ Metcalf B, Chuang C, Dufu K, et al. \ Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin. ACS Med Chem Lett. 2017;8(3):321-326.$

Page 3 of 3 www.MedChemExpress.com