Product Data Sheet

Valbenazine

Cat. No.:HY-16771CAS No.:1025504-45-3Molecular Formula: $C_{24}H_{38}N_2O_4$ Molecular Weight:418.57

Target: Monoamine Transporter

Pathway: Membrane Transporter/Ion Channel

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (119.45 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.3891 mL	11.9454 mL	23.8909 mL
	5 mM	0.4778 mL	2.3891 mL	4.7782 mL
	10 mM	0.2389 mL	1.1945 mL	2.3891 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 2.5 mg/mL (5.97 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.97 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	$\label{thm:continuous} Valbenazine (NBI-98854) is a vesicular monoamine transporter 2 (VMAT2) inhibitor with the K_i of 110-190 nM^{[1]}.$	
In Vitro	Valbenazine exhibits VMAT2 binding affinity in rat striatum and human platelets with Kis of 110 and 150 nM, respectively $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	Valbenazine (10 mg/kg; orally) induces ptosis (primarily an adrenergic response) and increases plasma prolactin primarily a dopaminergic response in rats ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

CUSTOMER VALIDATION

- Crit Rev Anal Chem. 2021 Mar 10;1-15.
- Toxicol Appl Pharmacol. 2023 Aug 28;116674.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Dimitri E Grigoriadis, et al. Pharmacologic Characterization of Valbenazine (NBI-98854) and Its Metabolites. J Pharmacol Exp Ther. 2017 Jun;361(3):454-461.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com