Screening Libraries

Product Data Sheet

Tolvaptan

Cat. No.: HY-17000 CAS No.: 150683-30-0 Molecular Formula: $C_{26}H_{25}CIN_{2}O_{3}$ Molecular Weight: 448.94

Target: Vasopressin Receptor; Autophagy

Pathway: GPCR/G Protein; Autophagy

Powder -20°C Storage: 3 years 4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 100 mg/mL (222.75 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2275 mL	11.1373 mL	22.2747 mL
	5 mM	0.4455 mL	2.2275 mL	4.4549 mL
	10 mM	0.2227 mL	1.1137 mL	2.2275 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.17 mg/mL (4.83 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.17 mg/mL (4.83 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Tolvaptan is a selective, competitive and orally active vasopressin receptor 2 (V_2R) antagonist with an IC₅₀ of 1.28 μ M for the inhibition of arginine vasopressin (AVP)-induced platelet aggregation. Tolvaptan induces cell apoposis and affects cell cycle.

Tolvaptan can be used for the research of hyponatremia[1][2].

Tolvaptan (0-100 μ M; 24-168 h) decreases the growth of HepG2 cells^[2]. In Vitro

Tolvaptan (20-100 μ M; 24-48 h) induces cell death in HepG2 cells^[2].

Tolvaptan (0-100 μ M; 24-48 h) affects cell cycle of HepG2 cells^[2].

Tolvaptan (0-100 μM; 24-48 h) causes DNA damage and induces apoptosis of HepG2 cells^[2].

Tolvaptan (0-100 μM; 24-48 h) decreases cyclins and CDKs, and increases γ-H2AX, PARP cleavage and LC3B-II in HepG2 cells

Tolvaptan (0-100 μM; 24	24 h) induces phosphorylation of JNK, ERK1/2 and p38 in HepG2 cells ^[2] . -28 h) induces autophagy of HepG2 cells ^[2] .		
MCE has not independer Cell Viability Assay ^[2]	ntly confirmed the accuracy of these methods. They are for reference only.		
Cell Line:	HepG2 cells		
Concentration:	0-100 μΜ		
Incubation Time:	24, 48, 96 and 168 hours		
Result:	Time- and dose-dependently inhibited HepG2 cells with IC $_{50}$ s of \boxtimes 100, 52.2, 33.0 and 27.1 \upmu M at 24, 48, 96 and 168 hours, respectively.		
Cell Viability Assay ^[2]			
Cell Line:	HepG2 cells		
Concentration:	20, 40, 60, 80, and 100 μM		
Incubation Time:	24 and 48 hours		
Result:	Time- and dose-dependently inhibited HepG2 cell growth and caused cell death, with LDH released at a concentration over 40 μ M. Caused oxidative DNA damage and increased ROS production with a concentration of 60-100 μ M.		
Cell Cycle Analysis ^[2]			
Cell Line:	HepG2 cells		
Concentration:	0-100 μΜ		
Incubation Time:	24 and 48 hours		
Result:	Caused cell cycle arrest at the G2 phase, dose-dependently increased the percentage of G0/G1 phase cells with a concentration of 20-60 μ M and increased the percentage of G2/M phase cells with a concentration of 60-100 μ M.		
Western Blot Analysis ^[2]			
Cell Line:	HepG2 cells		
Concentration:	0-100 μΜ		
Incubation Time:	24 and 48 hours		
Result:	Dose-dependently decreased cyclin D1, cyclin D3, cyclin B1, CDK1, CDK2, CDK4, and CDK6, and increased γ-H2AX which is a maker of DNA double strand breaks in HepG2 cells. Increased the full length PARP into cleavage situation and induced PARP cleavage.		
Apoptosis Analysis ^[2]			
Cell Line:	HepG2 cells		
Concentration:	0-100 μM		

Page 2 of 4 www.MedChemExpress.com

Result:	Induced cell apoptosis with increasing caspase 3/7 activity at a dose over 40 μM.		
Western Blot Analysis ^[2]			
Cell Line:	HepG2 cells		
Concentration:	0-100 μΜ		
Incubation Time:	4 and 24 hours		
Result:	Induced the activation of ERK1/2 and p38 after 4 or 24 h of exposure at a concentration over 60 μM in HepG2 cells.		
Cell Autophagy Assay ^[2]			
Cell Line:	HepG2 cells		
Concentration:	0-100 μΜ		
Incubation Time:	24 and 48 hours		
Result:	Induced cell autophagy with autophagosome formation and an increasing lysosomal turnover rate.		

In Vivo

Tolvaptan (10 mg/kg; p.o. once per day for 22 days) improves cyclophosphamide (CP)-induced nephrotoxicity in rats^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male albino rats with cyclophosphamide intraperitoneal injection ^[3]		
Dosage:	10 mg/kg		
Administration:	Oral gavage; 10 mg/kg once per day; for 22 days		
Result:	Improved the level of urine volume, serum Na ⁺ , serum osmolarity, urinary creatinine, free water clearance, serum creatinine, urea, serum K ⁺ , blood pressure, urine osmolarity, fractional excretion of sodium and signs of nephrotoxicity in mice. Decreased caspase-3, Bax and pro-inflammatory cytokines, and increased antiapoptotic Bcl-2 in renal tissue of mice.		

CUSTOMER VALIDATION

- J Am Soc Nephrol. 2018 Nov;29(11):2658-2670.
- J Med Chem. 2022 May 17.
- Int J Mol Sci. 2019 Nov 16;20(22):5764.
- Eur J Pharmacol. 2020 Aug 5;880:173157.
- FASEB J. 2019 Jan;33(1):469-483.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Wu Y, et al. Mechanisms of tolvaptan-induced toxicity in HepG2 cells. Biochem Pharmacol. 2015 Jun 15;95(4):324-36. [2]. El-Shabrawy M, et al. Protective effect of tolvaptan against cyclophosphamide-induced nephrotoxicity in rat models. Pharmacol Res Perspect. 2020 Oct;8(5):e00659.						
	Caution: Product has n	ot been fully validated for me	dical applications. For research use	only.		
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpress	s.com		
	Address: 1	Deer Park Dr, Suite Q, Monmo	uth Junction, NJ 08852, USA			

Page 4 of 4 www.MedChemExpress.com