Proteins

Product Data Sheet

TUG-770

Cat. No.: HY-15697 CAS No.: 1402601-82-4 Molecular Formula: C₁₉H₁₄FNO₂ Molecular Weight: 307.32

Target: Free Fatty Acid Receptor

Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 100 mg/mL (325.39 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.2539 mL	16.2697 mL	32.5394 mL
	5 mM	0.6508 mL	3.2539 mL	6.5079 mL
	10 mM	0.3254 mL	1.6270 mL	3.2539 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (8.13 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.13 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	TUG-770 is a potent, selective and orally active GPR40/FFA1 agonist with an EC $_{50}$ of 6 nM for human FFA1. TUG-770 shows a high selectivity for FFA1 over FFA2, FFA3, FFA4, PPAR γ , other receptors, transporters, and enzymes. TUG-770 can be uesd for type 2 diabetes research $^{[1]}$. TUG-770 is a click chemistry reagent, it contains an Alkyne group and can undergo coppercatalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
IC ₅₀ & Target	EC50: 6 nM (Human GPR40/FFA1) ^[1]
In Vitro	TUG-770 (Compound 22) displays excellent physicochemical and in vitro ADME properties, with good aqueous solubility, good chemical stability, low lipophilicity, and decreased plasma protein binding (PPB). TUG-770 shows excellent stability

toward human liver microsomes (HLM), and good permeability in the Caco-2 cell assay^[1]. TUG-770 exhibits lower potency on the rodent orthologs (mFFA1, pEC₅₀ = 6.83; rFFA1, pEC₅₀ = 6.49)^[1].

In the rat INS-1E cell line, TUG-770 significantly increases insulin secretion (10.75% of total content with 10 μ M 22 vs 8.74 with vehicle) at high glucose concentration (12.4 mM) and, no effect (4.14% of total content with 10 μ M 22 vs 4.02 with vehicle) at low glucose concentration (2.8 mM)^[1].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

In Vivo

TUG-770 (Compound 22; 20 mg/kg; oral administration; daily; for 28 days) treatment significantly improves glucose tolerance, and has no effect on food intake, body weight, body composition or plasma leptin concentration. TUG-770 also significantly improves the insulin sensitivity index (plasma glucose x plasma insulin) [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	C56B1/6 male mice (5-6 weeks of age) fed on the 60% fat diet D12492 $^{\left[1\right]}$	
Dosage:	20 mg/kg	
Administration:	Oral administration; daily; for 28 days	
Result:	Significantly improved glucose tolerance.	

CUSTOMER VALIDATION

- · Biomed Pharmacother. 2023 May.
- Chem Biol Interact. 2018 Sep 20;296:185-197.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Christiansen E, et al. Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes. ACS Med Chem Lett. 2013 May 9;4(5):441-445.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA