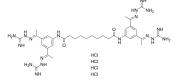
Inhibitors

Semapimod tetrahydrochloride

Cat. No.: HY-15509A CAS No.: 164301-51-3 Molecular Formula: $C_{34}H_{56}Cl_4N_{18}O_2$

890.74 Molecular Weight:


Target: p38 MAPK; Interleukin Related; TNF Receptor

Pathway: MAPK/ERK Pathway; Immunology/Inflammation; Apoptosis

-20°C, sealed storage, away from moisture and light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 2.17 mg/mL (2.44 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.1227 mL	5.6133 mL	11.2266 mL
	5 mM			
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Semapimod tetrahydrochloride (CNI-1493), an inhibitor of proinflammatory cytokine production, can inhibit TNF-α, IL-1β, Description

> and IL-6. Semapimod tetrahydrochloride inhibits TLR4 signaling (IC $_{50}$ \approx 0.3 μ M). Semapimod tetrahydrochloride inhibits p38 MAPK and nitric oxide production in macrophages. Semapimod tetrahydrochloride has potential in a variety of

inflammatory and autoimmune disorders [1][2][3].

IC₅₀ & Target IL-1β IL-6 p38 MAPK

In Vitro Semapimod tetrahydrochloride leads to a significant decrease of p38-MAPK phosphorylation in macrophages,

> proinflammatory gene expression of macrophage inflammatory protein-1alpha, interleukin-6, monocyte chemoattractant protein-1, and intercellular adhesion molecule-1, and neutrophil infiltration. Semapimod tetrahydrochloride completely

abrogated nitric oxide production within the tunica muscularis^[2].

Semapimod tetrahydrochloride desensitizes TLR signaling via its effect on the TLR chaperone gp96. Semapimod tetrahydrochloride inhibits ATP-binding and ATPase activities of gp96 in vitro (IC₅₀≈0.2-0.4 μM). Semapimod tetrahydrochloride desensitizes TLR signaling via its effect on the TLR chaperone gp96^[3].

Semapimod (0-500 nM) inhibits microglia-stimulated GL261 invasion^[4].

Semapimod (0-10 μ M) dose not affect serum-stimulated glioblastoma cell invasion, even at 10 μ M, underlining the

selectivity of semapimod for cells from the monocytic lineage [4]. Semapimod (200 nM) does not affect microglia-stimulated glioblastoma cell proliferation [4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Semapimod tetrahydrochloride (5 mg/kg; i.p; daily for 2 weeks) ameliorates endothelial dysfunction in Obese Zucker (OZ) rats^[1].

 $Semapimod\ tetrahydrochloride\ restores\ AM-induced\ akt\ phosphorylation\ and\ cGMP\ production\ in\ OZ\ rats \ ^{[1]}.$

Semapimod (6 mg/kg/day, Intracranially for 1 week) inhibits glioblastoma cell invasion in vivo^[4].

Semapimod (intracranially administered, 2 weeks) semapimos strongly increases the survival of GL261 tumor-bearing animals in combination with radiation, but has no significant benefit in the absence of radiation^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Male OZ rats ^[1]	
5 mg/kg	
I.p; daily for 2 weeks	
Restored endothelium-dependent vasorelaxation in OZ rats.	
C57Bl/6 mice (GL261 cells were orthotopically implanted) $^{[4]}$	
6 mg/kg/day	
Intracranially for 1 week, delivered via an osmotic pump	
Inhibited tumor cell invasion by more than 75%.	

CUSTOMER VALIDATION

• Patent. US20230226111A1.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Miller IS, et al. Semapimod sensitizes glioblastoma tumors to ionizing radiation by targeting microglia. PLoS One. 2014 May 9;9(5):e95885.
- $[2]. We hner S, Set \ al. \ Inhibition \ of \ p38 \ mitogen-activated \ protein \ kinase \ pathway \ as \ prophylax is \ of \ postoperative \ ileus \ in \ mice. \ Gastroenterology. \ 2009;136(2):619-629.$
- [3]. Nishimatsu H, et al. Blockade of endogenous proinflammatory cytokines ameliorates endothelial dysfunction in obese Zucker rats. Hypertens Res. 2008;31(4):737-743.
- [4]. Wang J, et al. Experimental Anti-Inflammatory Drug Semapimod Inhibits TLR Signaling by Targeting the TLR Chaperone gp96. J Immunol. 2016;196(12):5130-5137.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com