

Product Data Sheet

SCH 58261

 Cat. No.:
 HY-19533

 CAS No.:
 160098-96-4

 Molecular Formula:
 C₁₈H₁₅N₇O

 Molecular Weight:
 345.36

Target: Adenosine Receptor
Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 34 mg/mL (98.45 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8955 mL	14.4776 mL	28.9553 mL
	5 mM	0.5791 mL	2.8955 mL	5.7911 mL
	10 mM	0.2896 mL	1.4478 mL	2.8955 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.02 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.02 mM); Clear solution

BIOLOGICAL ACTIVITY

Description SCH 58261 is a potent, selective and competitive antagonist of adenosine A2A receptor with an IC₅₀ of 15 nM, and displays 323-, 53- and 100-fold more selective for A2A receptor than A1, A2B, and A3 receptors, respectively^{[1][2][3]}.

IC₅₀ & Target IC50: 15 nM (A2A receptor)^[2]

In Vitro SCH 58261 (0 nM–10 μM; 7 days) decreases cell viability in a concentration-dependent in the NSCLC cell line H1975^[4].

SCH58261 (25 $\mu\text{M};$ 72 hours) can inhibit the growth of CAF cells $^{[5]}.$

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Cell Viability Assay^[4]

Cell Line:	H1975 cells		
Concentration:	10 nM-10 μM		
Incubation Time:	7 days		
Result:	Produced a concentration-dependent decrease in H1975 cell growth.		
Cell Proliferation Assay ^{[5}			
Cell Line:	CAF cells		
Concentration:	25 μΜ		
Incubation Time:	72 hours		
Result:	Inhibit the growth of CAF1 and CAF2 cells.		

In Vivo

SCH 58261 (2 mg/kg; i.p.; daily; for 20 days) causes a decrease in the tumor burden in a NSCLC mouse model^[5].

SCH 58261 (5 mg/kg; i.p.; 3 times; every 3 hours; 10 minutes before haloperidol) partially decreases the haloperidol-induced catalepsy and the increase in the PENK mRNA expression in both dorsolateral and ventrolateral parts of the striatum at all three examined levels^[6].

 ${\sf SCH}\,58261\,diminishes\,the\,parkinsonian-like\,muscle\,rigidity\,and\,potentiates\,the\,effect\,of\,L-DOPA\,in\,rat\,model^{[7]}.$

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	4–6 weeks old athymic nude mice (NCI) with PC9 cells xenograft ^[5]	
Dosage:	2 mg/kg	
Administration:	Intraperitoneal injection; daily; for 20 days	
Result:	Decreased tumor growth.	

CUSTOMER VALIDATION

- Signal Transduct Target Ther. 2020 Apr 29;5(1):41.
- Nat Cancer. 2022 Aug;3(8):945-960.
- Acta Pharm Sin B. 2023 Apr 7.
- Talanta. 2024 Jan 17, 125672.
- Cell Signal. 2019 Mar 7;58:44-52.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Zocchi C, et al. Binding of the radioligand [3H]-SCH 58261, a new non-xanthine A2A adenosine receptor antagonist, to rat striatal membranes. Br J Pharmacol. 1996 Apr;117(7):1381-6.

[2]. Varani K, et al. Pharmacological and biochemical characterization of purified A2a adenosine receptors in human platelet membranes by [3H]-CGS 21680 binding. Br J Pharmacol. 1996 Apr;117(8):1693-701.

Page 2 of 3 www.MedChemExpress.com

- [3]. Xi J, et al. Adenosine A2A and A2B receptors work in concert to induce a strong protection against reperfusion injury in rat hearts. J Mol Cell Cardiol. 2009 Nov;47(5):684-90
- [4]. Kuzumaki N, et al. Multiple analyses of G-protein coupled receptor (GPCR) expression in the development of gefitinib-resistance in transforming non-small-cell lung cancer. PLoS One. 2012;7(10):e44368.
- [5]. Mediavilla-Varela M, et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol Ther. 2013 Sep;14(9):860-8.
- [6]. Wardas J, et al. SCH 58261, a selective adenosine A2A receptor antagonist, decreases the haloperidol-enhanced proenkephalin mRNA expression in the rat striatum. Brain Res. 2003 Jul 11;977(2):270-7.
- [7]. Wardas J, et al. SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse. 2001 Aug;41(2):160-71.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA