Product Data Sheet

Rapacuronium bromide

 Cat. No.:
 HY-16423

 CAS No.:
 156137-99-4

 Molecular Formula:
 $C_{37}H_{61}BrN_2O_4$

Molecular Weight: 677.8

Target: mAChR

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: -20°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

В

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 125 mg/mL (184.42 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.4754 mL	7.3768 mL	14.7536 mL
	5 mM	0.2951 mL	1.4754 mL	2.9507 mL
	10 mM	0.1475 mL	0.7377 mL	1.4754 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (3.07 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.08 mg/mL (3.07 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (3.07 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Rapacuronium bromide (Org 9487), a non-depolarizing neuromuscular blocker, is an allosteric modulator of muscarinic acetylcholine receptor $(mAChR)^{[1]}$.	
IC ₅₀ & Target	Muscarinic receptor $^{[1]}$	
In Vitro	Rapacuronium binds to all muscarinic receptor subtypes at physiologically relevant concentrations and displays micromolar affinity and slight selectivity towards M_2 receptor. Rapacuronium exhibits complex effects on the kinetics of ACh binding and subsequent receptor activation estimated from stimulation of [35 S]GTP γ S binding. Rapacuronium alone	

concentration dependently lowers [35 S]GTP γ S binding to membranes with a maximal effect of approximately 25% at odd-numbered subtypes and 15% at even-numbered subtypes, with EC $_{50}$ ranging from 28 μ M at M $_2$ receptors to 76 μ M at M $_3$ receptors. While the EC $_{50}$ values of Rapacuronium in inhibiting [35 S]GTP γ S binding at individual subtypes correlated with affinities measured in binding experiments with [3 H]ACh (R 2 = 0.76) they are lower (4- to 12-fold) at all subtypes. Measurements of ACh-stimulated [35 S]GTP γ S binding in the presence of 0.1, 1 and 10 μ M Rapacuronium shows differential effects of Rapacuronium on receptor activation by an orthosteric agonist at individual receptor subtypes. At even-numbered subtypes 1 μ M and 10 μ M Rapacuronium significantly increases ACh EC $_{50}$, with lowering of E $_{MAX}$ at 10 μ M Rapacuronium. At this subtype 0.1 and 1 μ M Rapacuronium causes a significant 2-fold decrease in ACh EC $_{50}$ and approximately 60% and 35% increase in E $_{MAX}$, respectively. Rapacuronium at 10 μ M increases ACh EC $_{50}$ by about 3-fold without a significant change in E $_{MAX}$. Rapacuronium (0.1 - 10 μ M) has no effect on ACh efficacy at the M $_{1}$ and M $_{5}$ subtypes but decreases the EC $_{50}$ of ACh in stimulating [35 S]GTP γ S binding by 1.5- and 4-fold, respectively, at concentrations of 0.1 and 1 μ M. However, this effect is not evident at 10 μ M Rapacuronium[11].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Time course of the neuromuscular effects of Rapacuronium following the administration of the $2\times ED_{90}$ doses to rats and guinea-pigs with ED_{90} of 5953 ± 199 and $187\pm16~\mu g/kg$ in rat and guinea pig, respectively^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assav [1]

For determination of [35 S]GTP γ S binding to G-proteins in membranes a final concentration of 200 pM (M_1 , M_3 and M_5 receptors) or 500 pM (M_2 and M_4 receptors) of [35 S]GTP γ S is used. Incubation medium is supplemented with 5 μ M (M_1 , M_3 and M_5 receptors) or 50 μ M (M_2 and M_4 receptors) GDP. Nonspecific binding is determined in the presence of 1 μ M unlabeled GTP γ S. When effects of Rapacuronium on ACh-stimulated [35 S]GTP γ S binding is measured Rapacuronium is added to membranes 60 min prior to ACh and [35 S]GTP γ S. Incubation with [35 S]GTP γ S is carried out for 20 min and free ligand is removed by filtration as described above. Filtration and washing with ice-cold water lasted for 9 s (wash-aspirate button time). After filtration filters are dried in vacuum for 1 h while heated at 80°C and then solid scintillator Meltilex A is melted on filters (105°C, 90 s) using a hot plate. After cooling the filters are counted using a Wallac Microbeta scintillation counter [11]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Jakubík J, et al. Divergence of allosteric effects of Rapacuronium on binding and function of muscarinic receptors. BMC Pharmacol. 2009 Dec 28;9:15.

[2]. Vizi ES, et al. A new short-acting non-depolarizing muscle relaxant (SZ1677) without cardiovascular side-effects. Acta Anaesthesiol Scand. 2003 Mar;47(3):291-300.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com