

Product Data Sheet

Photo-lysine hydrochloride

Cat. No.: HY-19804A

Molecular Formula: C_cH₁₄Cl₂N₄O₂

Molecular Weight: 245.11

Target: Biochemical Assay Reagents

Pathway: Others

Storage: 4°C, protect from light, stored under nitrogen

 * In solvent : -80°C, 6 months; -20°C, 1 month (protect from light, stored under

nitrogen)

SOLVENT & SOLUBILITY

In Vitro

 $H_2O : \ge 40 \text{ mg/mL } (163.19 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.0798 mL	20.3990 mL	40.7980 mL
	5 mM	0.8160 mL	4.0798 mL	8.1596 mL
	10 mM	0.4080 mL	2.0399 mL	4.0798 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

Photo-lysine hydrochloride, a new lysine-based photo-reactive amino acid, captures proteins that bind lysine post-translational modifications.

In Vitro

Photo-lysine is designed and synthesized by incorporating a photo-cross-linker (diazirine) into the side chain of natural lysine. Photo-lysine, which is readily incorporated into proteins by native mammalian translation machinery, can be used to capture and identify proteins that recognize lysine post-translational modifications (PTMs), including 'readers' and 'erasers' of histone modifications. Photo-lysine can be incorporated into MDH2 and mediate photo-cross-linking to fix protein-protein interactions in cells. UV irradiation of cells in the presence of photo-lysine induced robust cross-linking of HSP90 β and HSP60. Photo-lysine has higher efficiency than photo-leucine for photo-cross-linking of the two chaperone proteins. Photo-lysine enables capture of the heterodimer of proteins Ku70 and Ku80 within a protein complex. Photo-lysine enables identification of histone- and chromatin-binding proteins^[1].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

CUSTOMER VALIDATION

Page 2 of 2 www.MedChemExpress.com