Inhibitors

Phen-DC3 Trifluoromethanesulfonate

Cat. No.: HY-15594A CAS No.: 929895-45-4 Molecular Formula: $C_{36}H_{26}F_{6}N_{6}O_{8}S_{2}$

Molecular Weight: 848.75

Target: G-quadruplex

Pathway: Cell Cycle/DNA Damage

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 34 \text{ mg/mL} (40.06 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.1782 mL	5.8910 mL	11.7820 mL
	5 mM	0.2356 mL	1.1782 mL	2.3564 mL
	10 mM	0.1178 mL	0.5891 mL	1.1782 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Phen-DC3 Trifluoromethanesulfonate is a G-quadruplex (G4) specific ligand which can inhibit FANCJ and DinG helicases with Description IC₅₀s of 65±6 and 50±10 nM, respectively.

IC50: 65±6 nM (G4 substrate, FANCJ helicase), 50±10 nM (G4 substrate, DinG helicases)^[1] IC₅₀ & Target

In WT cells, a CEB1-WT array is rather stable but undergoes frequent rearrangements upon addition of 10 μM Phen-DC3 Trifluoromethanesulfonate (Phen-DC3). It is found that the c-Myc allele exhibits significant destabilization upon Phen-DC3 Trifluoromethanesulfonate treatment and PIF1 deletion. The CEB25-L111(T) array is stable in WT cells, it becomes unstable upon addition of Phen-DC3 Trifluoromethanesulfonate or deletion of PIF1. It is also highly destabilized in the presence of Phen-DC3 Trifluoromethanesulfonate or in the absence of PIF1. The CEB1-loop CEB25 allele remaines fully stable in both

PIF1-treated and WT cells^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

In Vitro

Cell Assay [2]

Briefly, untreated WT cells and pif1 Δ cells from a fresh patch of cells get from a single colony bearing the parental allele size are diluted in 5 mL of YPD (2×10⁵ cells/mL), grown for 8 generations at 30°C with shaking, and spreaded as single colony on YPD plates. To measure minisatellite instability upon Phen-DC3 Trifluoromethanesulfonate treatment, WT cells from a fresh patch on YPD are grown for 8 generations at 30°C in liquid SC containing Phen-DC3 Trifluoromethanesulfonate at 10 μ M. Isolated colonies or pools of colonies are analyzed by Southern blot using the EcoRI digestion that cuts at each side of the minisatellite^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Death Dis. 2021 Oct 25;12(11):999.
- iScience. 9 October 2022, 105312.
- J Phys Chem B. 2023 Jun 25.
- Patent. US20210188889A1.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Sanjay Kumar Bharti, et al. Specialization among Iron-Sulfur Cluster Helicases to Resolve G-quadruplex DNA Structures That Threaten Genomic Stability. J Biol Chem. 2013 Sep 27; 288(39): 28217–28229.

[2]. Aurèle Piazza, et al. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J. 2015 Jun 12; 34(12): 1718–1734.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA