

Product Data Sheet

PR-104

 Cat. No.:
 HY-16405

 CAS No.:
 851627-62-8

 Molecular Formula:
 C₁₄H₂₀BrN₄O₁₂PS

Molecular Weight: 579.27

Target: DNA Alkylator/Crosslinker
Pathway: Cell Cycle/DNA Damage

Storage: -80°C, protect from light, stored under nitrogen

SOLVENT & SOLUBILITY

In Vitro DMSO: 100 mg/mL (172.63 mM; Need ultrasonic)

H₂O: 31.25 mg/mL (53.95 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7263 mL	8.6316 mL	17.2631 mL
	5 mM	0.3453 mL	1.7263 mL	3.4526 mL
	10 mM	0.1726 mL	0.8632 mL	1.7263 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 5 mg/mL (8.63 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 5 mg/mL (8.63 mM); Clear solution

BIOLOGICAL ACTIVITY

Description PR-104 is a selective hypoxia-activated DNA cross-linking agent and can be used for the research of multiple tumor xenograft

models. PR-104, as a nitrogen mustard pre-proagent, is converted efficiently to the more lipophilic dinitrobenzamide

mustards alcohol PR-104A^[1].

 $\label{eq:problem} \textbf{In Vitro} \qquad \qquad \textbf{PR-104 (80 } \mu \text{M}; \textbf{1 hour; SiHa cells) shows greater suppression of radiation-induced DNA single-strand breaks under hypoxic}$

than aerobic conditions. PR-104 (100 μ M; 1 hour; SiHa cells) results in phosphorylation of Ser139 of histone H2AX (gH2AX). PR-104 (0.266 mmol/kg; 18 h; SiHa cells) shows activity against hypoxic cells after irradiation. PR-104 varies in potency between cell lines, with the lowest IC₅₀ (0.51 μ mol/L) in H460 cells and highest (7.3 μ mol/L) in PC3 prostate cells^[1].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

In Vivo

PR-104 (0.56 mmol/kg; i.v. or i.p.; $0\sim2$ hours) makes the plasma area under the curve. PR-104 (0.23 mmol/kg; i.p.; 100 days) shows antitumor activity^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	CD-1nu/nu mice	
Dosage:	0.56 mmol/kg (Pharmacokinetics Analysis)	
Administration:	l.v. or i.p.	
Result:	The plasma area under the curve.	
Animal Model:	CD1-Foxn1nu mice	
Dosage:	0.23 mmol/kg	
Administration:	l.p.	
Result:	Showed antitumor activity.	

REFERENCES

[1]. Patterson AV, et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res. 2007;13(13):3922-3932.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA