Proteins

Product Data Sheet

Osimertinib-d₆

Cat. No.: HY-15772S CAS No.: 1638281-44-3 Molecular Formula: $C_{28}H_{27}D_6N_7O_2$

Molecular Weight: 505.64 Target: **EGFR**

Pathway: JAK/STAT Signaling; Protein Tyrosine Kinase/RTK

4°C, protect from light, stored under nitrogen Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light, stored under

nitrogen)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (197.77 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9777 mL	9.8885 mL	19.7769 mL
	5 mM	0.3955 mL	1.9777 mL	3.9554 mL
	10 mM	0.1978 mL	0.9888 mL	1.9777 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

 $Osimertinib-d_{6}\ is\ a\ deuterium\ labeled\ osimertinib.\ Osimertinib\ is\ a\ covalent,\ orally\ active,\ irreversible,\ and\ mutant-selective$ EGFR inhibitor with an apparent IC50 of 12 nM against L858R and 1 nM against L858R/T790M. Osimertinib overcomes T790Mmediated resistance to EGFR inhibitors in lung cancer[1].

In Vitro

Osimertinib (AZD9291) (0-10 μM; 72 hours) dramatically inhibits cell proliferation with IC₅₀s of 41, 26, 41, and 31 nM, respectively^[2].

Osimertinib (0-10 μM; 72 hours) inhibits cell proliferation (Ba/F3 cells harboring a T790M mutation, exon 19del+T790M, or L858R+T790M) with IC_{50} s of 6, 7, and 74 nM, respectively^[2].

Osimertinib (0-10 μM; 72 hours) inhibits Ba/F3 cells harboring EGFR exon 20 insertion mutations (IC₅₀ ranging from 16-701 nM for A763_Y764insFQEA (FQEA), Y764_V765insHH (HH), A767_V769dupASV (ASV), and D770_N771insNPG (NPG) cells) [2]. Osimertinib shows high levels of phenotype potency in both sensitizing-mutant (mean IC₅₀ of 8 nM in PC-9) and T790M (mean IC₅₀ of 11 and 40 nM in H1975 and PC-9VanR respectively) EGFR cell lines. Osimertinib has much less activity towards wild-type EGFR (mean IC₅₀ of 650 and 461 nM in Calu3 and H2073 respectively)^[1].

Osimertinib (0.1 µM; 48 hours) induces apoptosis in Ba/F3 cells (apoptosis rate of 40.9% and 90% in EGFR exon 19del+T790M, EGFR L858R+T790M respectively) [2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Line:	PC-9, H3255, PC-9ER, and H1975 cells			
Concentration:	0.0001, 0.001, 0.01, 0.1, 1, 10 μM			
Incubation Time:	72 hours			
Result:	Dramatically inhibited cell proliferation (IC ₅₀ =41,26, 41, 31 nM, respectively)			
Cell Proliferation Assay [[]	2]			
Cell Line:	Ba/F3 cells (harboring a T790M mutation, exon 19del+T790M, or L858R+T790M)			
Concentration:	0.0001, 0.001, 0.01, 0.1, 1, 10 μM			
Incubation Time:	72 hours			
Result:	Inhibited cell proliferation (IC ₅₀ = 6, 7, 74 nM, respectively)			
Apoptosis Analysis ^[2]				
Cell Line:	Ba/F3 cells (harboring EGFR exon 20 insertion mutations)			
Concentration:	0.0001, 0.001, 0.01, 0.1, 1, 10 μM			
Incubation Time:	72 hours			
Result:	Inhibited cell proliferation (IC ₅₀ = 16, 701, 230, 38 nM, respectively)			
Apoptosis Analysis ^[2]				
Cell Line:	Ba/F3 cells(harboring EGFR exon 19del+T790M or EGFR L858R+T790M)			
Concentration:	0.1 μM			
Incubation Time:	48 hours			
Result:	Inducted apoptosis with the rate of 40.9% and 90% in EGFR T790M positive mutations cells respectively.			

In Vivo

Osimertinib (0.1-25 mg/kg; p.o.; daily for 14 day) induces significant dose-dependent regression in both PC-9 (ex19del) and H1975 (L858R/T790M) tumor xenograft models $^{[1]}$.

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Animal Model:	PC-9 (ex19del) and H1975 (L858R/T790M) tumor xenograft models $^{[1]}$		
Dosage:	0.1-10 mg/kg (PC-9 xenograft models); 0.5- 25 mg/kg (H1975 xenograft models)		
Administration:	p.o.; daily for 14 day		
Result:	Induced significant dose-dependent regression in both PC-9 (ex19del) and H1975 (L858R/T790M) tumor xenograft models.		

REFERENCES

 $[1]. Cross \, \mathsf{DA}, et \, al. \, \mathsf{AZD9291}, an \, irreversible \, \mathsf{EGFR} \, \mathsf{TKI}, overcomes \, \mathsf{T790M-mediated} \, \mathsf{resistance} \, \mathsf{to} \, \mathsf{EGFR} \, \mathsf{inhibitors} \, \mathsf{in} \, \mathsf{lung} \, \mathsf{cancer}. \, \mathsf{Cancer} \, \mathsf{Discov}. \, \mathsf{2014} \, \mathsf{Sep;} \mathsf{4(9):} 1046-61.$

Page 2 of 3 www.MedChemExpress.com

2]. [2]Hirano T, et al. Pharmacological and Structural Characterizations of Naquotinib, a Novel Third-Generation EGFR Tyrosine Kinase Inhibitor, in EGFR-Mutated Non- Small Cell Lung Cancer. Mol Cancer Ther. 2018 Apr;17(4):740-750.						
	Caution: Product has not b	peen fully validated for medi	cal applications. For research ι	ise only.		
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpr			
	Address: 1 De	er Park Dr, Suite Q, Monmout	h Junction, NJ 08852, USA			

Page 3 of 3 www.MedChemExpress.com