Proteins

Screening Libraries

Product Data Sheet

Mozavaptan

Cat. No.: HY-18346 CAS No.: 137975-06-5 Molecular Formula: $C_{27}H_{29}N_3O_2$ Molecular Weight: 427.54

Target: Vasopressin Receptor Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 6.2 mg/mL (14.50 mM; Need warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.3390 mL	11.6948 mL	23.3896 mL
	5 mM	0.4678 mL	2.3390 mL	4.6779 mL
	10 mM	0.2339 mL	1.1695 mL	2.3390 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Mozavaptan (OPC-31260) is a benzazepine derivative and a potent, selective, competitive and orally active vasopressin V_2 receptor antagonist with an IC $_{50}$ of 14 nM. Mozavaptan shows ~85-fold selectivity for V_2 receptor over V_1 receptor (IC $_{50}$ of 1.2 μ M), and can antagonize the antidiuretic action of arginine vasopressin (AVP) in vivo. Mozavaptan has the potential for hyponatremia, syndrome of inappropriate antidiuretic hormone (SIADH), and congestive heart failure treatment ^{[1][2]} .
IC ₅₀ & Target	IC50: 14 nM (Vasopressin V_2 receptor); 1.2 μ M (Vasopressin V_1 receptor) ^[1]
In Vitro	Mozavaptan (OPC-31260) inhibits AVP binding to binding to rat liver (V1 receptor) and kidney (V2 receptor) plasma membranes in a competitive manner and that it is about 100 times more selective for V2 receptors. K_d value for [3H]-AVP in rat liver is 1.1 nM; in rat kidney is 1.38 nM. The K_d of [3H]-AVP is reduced significantly in both rat liver and kidney in the presence of Mozavaptan (K_d of 2.47 nM and 5.51 nM for V1 receptor at the doses of 0.3 μ M and 1 μ M.respectively; K_d of 2.4 nM and 4.03 nM for V2 receptor at the doses of 0.3 μ M and 1 μ M.respectively) ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Mozavaptan (OPC-31260; 1-30 mg/kg; oral administration; hydrated conscious rats) treatment dose-dependently increases

urine flow and decreased urine osmolality^[1].

Mozavaptan (OPC-31260; 10-100 μ g/kg; intravenous injection; male Sprague-Dawley rats) treatment inhibits the antidiuretic action of exogenously administered arginine vasopressin (AVP) in water-loaded, alcohol-anaesthetized rats in a dose-dependent manner^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Hydrated conscious rats (300-350 g) ^[1]	
Dosage:	1 mg/kg, 3 mg/kg, 10 mg/kg, 30 mg/kg	
Administration:	Oral administration	
Result:	Dose-dependently increased urine flow and decreased urine osmolality.	

CUSTOMER VALIDATION

• Eur J Pharmacol. 2020 Aug 5;880:173157.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Yamamura Y, et al. Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist. Br J Pharmacol. 1992 Apr;105(4):787-91.

[2]. Yamaguchi K, et al. Clinical implication of the antidiuretic hormone (ADH) receptor antagonist mozavaptan hydrochloride in patients with ectopic ADH syndrome. Jpn J Clin Oncol. 2011 Jan;41(1):148-52.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA