Proteins

Cat. No.: HY-17398 CAS No.: 145525-41-3 Molecular Formula: $C_{19}H_{24}NO_3 \cdot 1/2 Ca$

Molecular Weight: 334.44

Potassium Channel Target:

Pathway: Membrane Transporter/Ion Channel Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 5 mg/mL (14.95 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.9901 mL	14.9504 mL	29.9007 mL
	5 mM	0.5980 mL	2.9901 mL	5.9801 mL
	10 mM	0.2990 mL	1.4950 mL	2.9901 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.5 mg/mL (1.50 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 0.5 mg/mL (1.50 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.5 mg/mL (1.50 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Mitiglinide Calcium (KAD-1229 anhydrous), an insulinotropic agent, is an ATP-sensitive K ⁺ (K_{ATP}) channel antagonist. Mitiglinide Calcium is highly specific to the Kir6.2/SUR1 complex (the pancreatic beta-cell K_{ATP} channel). Mitiglinide Calcium can be used for the research of type 2 diabetes ^{[1][2]} .	
IC ₅₀ & Target	$K_{ATP}channel^{[1]}$	
In Vitro	Mitiglinide Calcium inhibits the Kir6.2/SUR1 channel currents in a dose-dependent manner (IC $_{50}$ value, 100 nM) but does not significantly inhibit either Kir6.2/SUR2A or Kir6.2/SUR2B channel currents even at high doses (more than 10 μ M) in COS-1 cells ^[1] .	

	MCE has not independe	MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	under the curve for pla	Mitiglinide Calcium (1-3 mg/kg; p.o.) suppresses the increase in plasma glucose levels seen after a meal load and the area under the curve for plasma glucose levels (AUCglucose) up to 5 h after the meal load ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
	Animal Model:	Pregnant Wistar rats (12 weeks) ^[2]	
	Dosage:	0.3 mg/kg, 1 mg/kg, 3 mg/kg	
	Administration:	Oral administration	
	Result:	Dose-dependently suppressed AUC _{glucose} levels.	

REFERENCES

[1]. Y Sunaga, et al. The effects of mitiglinide (KAD-1229), a new anti-diabetic drug, on ATP-sensitive K+ channels and insulin secretion: comparison with the sulfonylureas and nateglinide. Eur J Pharmacol. 2001 Nov 9;431(1):119-25.

[2]. Kiyoshi Ichikawa, et al. Effect of KAD-1229, a novel hypoglycaemic agent, on plasma glucose levels after meal load in type 2 diabetic rats. Clin Exp Pharmacol Physiol. May-Jun 2002;29(5-6):423-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA