Product Data Sheet

Mefloquine hydrochloride

Cat. No.: HY-17437A CAS No.: 51773-92-3

Molecular Weight: 414.77

Molecular Formula:

Target: Parasite; Autophagy; SARS-CoV; Potassium Channel; ROS Kinase

Pathway: Anti-infection; Autophagy; Membrane Transporter/Ion Channel; Protein Tyrosine

Kinase/RTK

Storage: 4°C, sealed storage, away from moisture

 $C_{17}H_{17}ClF_6N_2O$

* In solvent: -80°C, 1 year; -20°C, 6 months (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (120.55 mM; Need ultrasonic)

H₂O: 2.86 mg/mL (6.90 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4110 mL	12.0549 mL	24.1097 mL
	5 mM	0.4822 mL	2.4110 mL	4.8219 mL
	10 mM	0.2411 mL	1.2055 mL	2.4110 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (6.03 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (6.03 mM); Clear solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (6.03 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	Mefloquine hydrochloride (Mefloquin hydrochloride), a quinoline antimalarial agent, is an anti-SARS-CoV-2 entry inhibitor. Mefloquine hydrochloride is also a K ⁺ channel (KvQT1/minK) antagonist with an IC ₅₀ of ~1 μ M. Mefloquine hydrochloride can be used for malaria, systemic lupus erythematosus and cancer research ^{[1][2][3]} .
IC ₅₀ & Target	Plasmodium
In Vitro	Mefloquine hydrochloride selectively inhibits prostate cancer (PCa) cell growth with an IC₅o of ~10 μM. Mefloquine

hydrochloride also induces hyperpolarization of the mitochondrial membrane potential (MMP), as well as ROS generation [2]. Mefloquine hydrochloride (10 μ M)-mediated ROS simultaneously downregulated Akt phosphorylation and activated ERK, JNK and AMPK signaling in PC3 cells [2].

Mefloquine shows higher anti-SARS-CoV-2 activity than Hydroxychloroquine in VeroE6/TMPRSS2 and Calu-3 cells, with IC $_{50}$ of 1.28 μ M, IC $_{90}$ of 2.31 μ M, and IC $_{99}$ of 4.39 μ M in VeroE6/TMPRSS2 cells. Mefloquine inhibits viral entry after viral attachment to the target cell^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Mefloquine hydrochloride (5 mg/kg; i.p.; daily; 14 days) reverses the lower vertebral cancellous bone volume and bone formation; and has modest effects on cortical bone volume, thickness, and moment of inertia in old mice $^{[4]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Young 3.5-month-old and old 21-month-old female C57BL/6 mice ^[4]	
Dosage:	5 mg/kg	
Administration:	Intraperitoneal injection; daily; 14 days	
Result:	Reversed the lower vertebral cancellous bone volume and bone formation in old mice.	

CUSTOMER VALIDATION

- Front Oncol. 2020 Jul 28;10:1217.
- PLoS Negl Trop Dis. 2019 Aug 20;13(8):e0007681.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Kang J, et al. Interactions of the antimalarial drug mefloquine with the human cardiac potassium channels KvLQT1/minK and HERG. J Pharmacol Exp Ther. 2001 Oct;299(1):290-6.
- [2]. Yan KH, et al. Mefloquine exerts anticancer activity in prostate cancer cells via ROS-mediated modulation of Akt, ERK, JNK and AMPK signaling. Oncol Lett. 2013 May;5(5):1541-1545.
- [3]. Kaho Shionoya, et al. Mefloquine, a Potent Anti-severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Drug as an Entry Inhibitor in vitro. Front Microbiol. 2021 Apr 30;12:651403.
- [4]. Rafael Pacheco-Costa, et al. Reversal of loss of bone mass in old mice treated with mefloquine. Bone. 2018 Sep;114:22-31.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA