L189

Cat. No.:	HY-15588		
CAS No.:	64232-83-3		
Molecular Formula:	C ₁₁ H ₁₀ N ₄ OS		
Molecular Weight:	246.29		
Target:	DNA/RNA Sy	nthesis/	
Pathway:	Cell Cycle/DNA Damage		
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	2 years
		-20°C	1 year

®

MedChemExpress

SOLVENT & SOLUBILITY

	Solvent Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	4.0603 mL	20.3013 mL	40.6025 mL
	5 mM	0.8121 mL	4.0603 mL	8.1205 mL
	10 mM	0.4060 mL	2.0301 mL	4.0603 mL
Place refer to the so		0.4060 mL		

Description L189 is a DNA ligase inhibitor. L189 has inhibition effect for DNA Ligase I, III and IV with IC ₅₀ values of 5 μM, 9 μM and 5 μM, respectively. L189 has no cytotoxicity and individually increase cell death. L189 can be used for the research of cancer ^{[1][2]} . In Vitro L189 inhibits DNA Ligase I, III and IV activity with IC ₅₀ values of 5 μM, 9 μM and 5 μM, respectively ^[1] . L189 inhibits DNA Ligase I, III and IV activity with IC ₅₀ values of 5 μM, 9 μM and 5 μM, respectively ^[1] . L189 (5 μM, 48 h) bring good anti-proliferation activity preferentially and cause cell death by creating a cytotoxic environment ^[2] . L189 (5 μM, 48 h) reduces HeLa nuclear staining along with TMZ ^[2] . L189 (5 μM, 48 h) enhances TMZ-induced HeLa growth arrest when along with TMZ that possibly in G2/M cell cycle phase without employing cell death mechanisms ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Cytotoxicity Assay ^[1]	BIOLOGICAL ACTI	
Image: Provide the second s	BIOLOGICALMENT	
 L189 (5 μM, 48 h) bring good anti-proliferation activity preferentially and cause cell death by creating a cytotoxic environment^[2]. L189 (5 μM, 48 h) reduces HeLa nuclear staining along with TMZ^[2]. L189 (5 μM, 48 h) enhances TMZ-induced HeLa growth arrest when along with TMZ that possibly in G2/M cell cycle phase without employing cell death mechanisms^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. 	Description	
	In Vitro	 L189 (5 μM, 48 h) bring good anti-proliferation activity preferentially and cause cell death by creating a cytotoxic environment^[2]. L189 (5 μM, 48 h) reduces HeLa nuclear staining along with TMZ^[2]. L189 (5 μM, 48 h) enhances TMZ-induced HeLa growth arrest when along with TMZ that possibly in G2/M cell cycle phase without employing cell death mechanisms^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Product Data Sheet

/N

 H_2N

QН

Ν

SH

Cell Line:	HeLa cells
Concentration:	5 μΜ
Incubation Time:	48 h
Result:	Blocked to HeLa growth and proliferation along with TMZ and not mark the significant cell cytotoxicity alone.

CUSTOMER VALIDATION

- Nat Methods. 2023 Jul 20.
- Mol Cell. 2021 Aug 5;81(15):3128-3144.e7.
- J Mol Med (Berl). 2019 Aug;97(8):1183-1193.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Devashree Jahagirdar, et al. Combinatorial Use of DNA Ligase Inhibitor L189 and Temozolomide Potentiates Cell Growth Arrest in HeLa. Current Cancer Therapy Reviews, 2018, 14, 1-11.

[2]. Xi Chen, Shijun Zhong, Xiao Zhu, et al. Rational Design of Human DNA Ligase Inhibitors that Target Cellular DNA Replication and Repair. Cancer Res 2008; 68: (9). May 1, 2008

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA