Product Data Sheet

Kevetrin hydrochloride

Cat. No.: HY-16271 CAS No.: 66592-89-0 Molecular Formula: C₅H₁₀ClN₃S Molecular Weight: 179.67

Target: MDM-2/p53; Apoptosis

Pathway: **Apoptosis**

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro $H_2O: 100 \text{ mg/mL}$ (556.58 mM; Need ultrasonic)

DMSO: \geq 40 mg/mL (222.63 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	5.5658 mL	27.8288 mL	55.6576 mL
	5 mM	1.1132 mL	5.5658 mL	11.1315 mL
	10 mM	0.5566 mL	2.7829 mL	5.5658 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 100 mg/mL (556.58 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (13.91 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (13.91 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (13.91 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Kevetrin hydrochloride is a potent activator of p53, induces apoptosis in TP53 wild-type and mutant acute myeloid leukemia cells. Kevetrin a preferential cytotoxic activity against blast cells ^{[1][2]} .
In Vitro	Kevetrin hydrochloride (85, 170, 340 μ M; 6 h) significantly inhibits KASUMI-1 cells growth in a dose-dependent manner, without affecting MOLM-13 cells ^[1] .

?Kevetrin hydrochloride (340 μ M; 6 h) induces metallothionein (MT) expression in acute myeloid leukemia (AML) cells, and also down-regulates genes in relation to p53 activity, the regulator of WNT/ β -catenin signaling forkhead box K2 and the transcription factor signal transducer and activator of transcription 5A (STAT5A)^[1].

?Kevetrin hydrochloride (340 μ M; 24 h) induces apoptosis on KASUMI-1 cell line, without leading cell cycle alteration^[1]. ?Kevetrin hydrochloride (100, 200, 400 μ M; 48 h) increases the mRNA and protein level of p53 and induces p21 protein production in A2780 cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

cell viability /155ay		
Cell Line:	MOLM-13 and KASUMI-1 cells	
Concentration:	85, 170 and 340 μM	
Incubation Time:	6 h, 6 h + 66 h wash-out (wo,×1), 6 h + 66 h wo (×2), 6 h + 66 h wo (×3)	
Result:	Only inhibited the cell viability of KASUMI-1 cells and decreased cells viability in a dose-and time-dependent manner.	
Apoptosis Analysis ^[1]		
Cell Line:	MOLM-13, KASUMI-1, TP53-wt OCI-AML3, and TP53-mutant NOMO-1 cells	
Concentration:	85, 170 and 340 μM	
Incubation Time:	24, 48, and 72 hours	
Result:	Induced KASUMI-1 apoptosis at 340 μM on 24 hours and inhibited MOLM-13 at 340 μM on 48 h.	
Cell Cycle Analysis ^[1]		
Cell Line:	MOLM-13, KASUMI-1, TP53-wt OCI-AML3, and TP53-mutant NOMO-1 cells	
Concentration:	340 μΜ	
Incubation Time:	24, and 48 hours	
Result:	Arrested cell cycle of OCI-AML3 and NOMO-1 cells at G0/G1 phase, without altering cell cycle of MOLM-13 and KASUMI-1 cells.	

In Vivo

Kevetrin hydrochloride (150-200 mg/kg; i.p.; 20 d) induces ~40% cell death in OV-90 or OVCAR-3 xenograft tumors, also inhibits tumor growth and extents survival time of mice with tumor xenograft mode $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	A2780 xenograft tumor model in nude mice ^[2]
Dosage:	200 mg/kg
Administration:	Intraperitoneal injection; 3 times per week, for 20 days
Result:	Inhibited tumor growth and suppressed the tumor volume.
Animal Model:	SKOV-3 xenograft ascites model in mice $^{[2]}$
Dosage:	150 mg/kg

Administration:	Intraperitoneal injection
Result:	Prolonged the survival time of mice, and maintained 100% survival rate more over 35 days.

REFERENCES

- [1]. Napolitano R, et al. Kevetrin induces apoptosis in TP53 wildtype and mutant acute myeloid leukemia cells. Oncol Rep. 2020 Oct;44(4):1561-1573.
- [2]. Kumar A, et al. Abstract 3221: kevetrin induces p53-dependent and independKumar A, et al. Abstract 3221: kevetrin induces p53-dependent and independent cell cycle arrest and apoptosis in ovarian cancer cell lines representing heterogeneous histologies. Cancer Research. 2017. 77(13 Supplement), 3221-3221.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com