Kartogenin

MedChemExpress

Cat. No.:	HY-16268				
CAS No.:	4727-31-5				
Molecular Formula:	C ₂₀ H ₁₅ NO ₃				
Molecular Weight:	317.34				
Target:	TGF-beta/Smad				
Pathway:	Stem Cell/Wnt; TGF-beta/Smad				
Storage:	Powder	-20°C	3 years		
		4°C	2 years		
	In solvent	-80°C	6 months		
		-20°C	1 month		

SOLVENT & SOLUBILITY

In Vitro	DMSO : ≥ 42 mg/mL (132.35 mM) H ₂ O : 1 mg/mL (3.15 mM; ultrasonic and warming and heat to 60°C) * "≥" means soluble, but saturation unknown.						
Pr St		Solvent Mass Concentration	1 mg	5 mg	10 mg		
	Preparing Stock Solutions	1 mM	3.1512 mL	15.7560 mL	31.5119 mL		
		5 mM	0.6302 mL	3.1512 mL	6.3024 mL		
		10 mM	0.3151 mL	1.5756 mL	3.1512 mL		
	Please refer to the solubility information to select the appropriate solvent.						
In Vivo	1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.88 mM); Clear solution						
	2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.88 mM); Clear solution						
	3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.55 mM); Clear solution						

BIOLOGICAL ACTIVITY

Description

Kartogenin (KGN) is an inducer of chondrogenic tissue formation (EC₅₀: 100 nM). Kartogenin induces chondrogenesis by binding to fibrin A, disrupting its interaction with the transcription factor core binding factor beta subunit (CBFβ), and by modulating the CBFβ-RUNX1 transcriptional program. Kartogenin also promotes tendon-bone junction (TBJ) wound healing by stimulating collagen synthesis. Kartogenin is widely used in cell-free therapy in the field of regeneration for cartilage regeneration and protection, tendon-bone healing, wound healing and limb development. Kartogenin promotes cartilage

	repair, coordinates limb development, and is also used in osteoarthritis (OA) research ^{[1][2][3][4]} .
In Vitro	 Kartogenin (100 nM; 72 h) induces chondrocyte nodule formation in primary hMSCs^[1]. Kartogenin (10 nM-10 μM; 72 h) increases chondrocyte-specific gene expression in hMSCs^[1]. Kartogenin (0.12-10 μM; 48 h) inhibits nitric oxide (NO) and glycosaminoglycan (GAG) release induced by cytokines in primary bovine articular chondrocytes^[1]. Kartogenin (50-5000 nM; 2 weeks) induces the chondrogenetic differentiation of the BMSCs in a concentration-dependent manner^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Kartogenin (10 μM in 4 μL of saline; i.a. on days 7 and 21) promotes cartilag erepair in collagenase VII-induced OA models in mice ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Sci Bull. 2023 Aug 1.
- Chem Eng J. 1 March 2022, 133861.
- Chem Eng J. 400 (2020) 126004.
- Biomaterials. 2022 Jun;285:121530.
- Biomaterials. December 2021, 121216.

See more customer validations on <u>www.MedChemExpress.com</u>

REFERENCES

[1]. Johnson K, et, al. A stem cell-based approach to cartilage repair. Science. 2012 May 11;336(6082):717-21.

[2]. Liu F, et, al. A novel kartogenin-platelet-rich plasma gel enhances chondrogenesis of bone marrow mesenchymal stem cells in vitro and promotes wounded meniscus healing in vivo. Stem Cell Res Ther. 2019 Jul 8;10(1):201.

[3]. Cai J, Zhang L, Chen J, et al. Kartogenin and its application in regenerative medicine[J]. Current medical science, 2019, 39(1): 16-20.

[4]. Zhang J, Wang J H C. Kartogenin induces cartilage-like tissue formation in tendon-bone junction[J]. Bone research, 2014, 2(1): 1-10.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA