

JNJ-63533054

Cat. No.: HY-19838 CAS No.: 1802326-66-4 Molecular Formula: $C_{17}H_{17}CIN_{2}O_{2}$

Molecular Weight: 317 Target: **GPR139**

Pathway: GPCR/G Protein; Neuronal Signaling

-20°C Storage: Powder

3 years 4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

DMSO: ≥ 50 mg/mL (157.73 mM) In Vitro

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.1546 mL	15.7729 mL	31.5457 mL
	5 mM	0.6309 mL	3.1546 mL	6.3091 mL
	10 mM	0.3155 mL	1.5773 mL	3.1546 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.89 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.89 mM); Clear solution

BIOLOGICAL ACTIVITY

JNJ-63533054 is a potent, selective and orally active GPR139 agonist with an EC₅₀ of 16 nM for human GPR139 (hGPR139). Description

JNJ-63533054 shows selective for GPR139 over other GPCRs, ion channels, and transporters. JNJ-63533054 can cross the

blood-brain barrier (BBB)^{[1][2]}.

EC50: 16 nM (Human GPR139), 63 nM (Rat GPR139) and 28 nM (Mouse GPR139)^[1] IC₅₀ & Target

In Vitro JNJ-63533054 specifically activates human GPR139 in the calcium mobilization (EC $_{50}$ of 16 nM) and GTP $_{7}$ S binding (EC $_{70}$ of 16 nM) and GTP $_{7$ 17 nM) assays. JNJ-63533054 also activates the rat and mouse GPR139 receptor with similar potency (rat EC₅₀ of 63 nM,

mouse EC_{50} of 28 nM)^[1].

?In a saturation study for human GPR139, a single population of high-affinity binding sites for [3H] JNJ-63533054 is observed (K_d of 10 nM). The B_{max} value is 26 pmol/mg of protein. Saturation studies for the rat GPR139 and mouse GPR139 yielded K_d values within the same range (32 nM and 23 nM, respectively; B_{max} = 8.5 pmol/mg of protein and 6.2 pmol/mg of protein, respectively)^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

JNJ-63533054 (3-30 mg/kg; oral administration; once; SD rats) treatment induces a dose-dependent reduction in locomotor activity in the first hour^[1].

?The pharmacokinetics of JNJ-63533054 (Compound 7c; 1 mg/kg iv; 5 mg/kg po) in rat is examined. The IV clearance is 53 mL/min/kg,? the C_{max} is 317 ng/mL (~1 μ M), the $t_{1/2}$ is 2.5 hours,? and JNJ-63533054 is able to cross the blood-brain barrier (BBB) with a brain to plasma ratio (b/p) of 1.2^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Sprague-Dawley rats $(350-450 \text{ g})^{[1]}$	
Dosage:	3 mg/kg, 10 mg/kg, and 30 mg/kg	
Administration:	Oral administration; once	
Result:	Induced a dose-dependent reduction in locomotor activity in the first hour.	

REFERENCES

[1]. Dvorak CA, et al. Identification and SAR of Glycine Benzamides as Potent Agonists for the GPR139 Receptor. ACS Med Chem Lett. 2015 Jul 20;6(9):1015-8.

[2]. Liu C, et al. GPR139, an Orphan Receptor Highly Enriched in the Habenula and Septum, Is Activated by the Essential Amino Acids L-Tryptophan and L-Phenylalanine. Mol Pharmacol. 2015 Nov;88(5):911-25.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA