JNJ-40411813

Cat. No.: HY-15748 CAS No.: 1127498-03-6 Molecular Formula: $C_{20}H_{25}CIN_{2}O$ Molecular Weight: 344.88 Target: mGluR

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Powder

3 years 4°C 2 years

-80°C In solvent 2 years

-20°C

-20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (72.49 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg	
Preparing Stock Solutions	1 mM	2.8996 mL	14.4978 mL	28.9956 mL	
	5 mM	0.5799 mL	2.8996 mL	5.7991 mL	
	10 mM	0.2900 mL	1.4498 mL	2.8996 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (7.25 mM); Suspended solution; Need ultrasonic and warming
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.25 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (7.25 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description JNJ-40411813 (ADX-71149) is a novel positive allosteric modulator of the metabotropic Glutamate 2 receptor (mGlu2R) with EC₅₀ of 147 nM. JNJ-40411813 has orally bioactivity and penetrate the blood-brain barriers. JNJ-40411813 has the potential property of anti-depression[1][2][3].

IC₅₀ & Target

mGlu2 Receptor 147 nM (EC50)

In Vivo

JNJ-40411813 (ADX-71149) (5-20 mg/kg; p.o.; 6 times in 24 h) clearly potentiated glutamate response in brain regions, more specifically in the cortical regions, striatum, and the hippocampus, coaddition of Glutamate (HY-N0455B) $^{[2]}$.

Pharmacokinetic Analysis in SD rat^[2]

Route	Dose (mg/kg)	AUC _{INF_obs} (ng·h/mL)	t _{1/2} (h)	T _{max} (h)	C _{max} (ng/mL)	Cl _{obs} (L·h/kg)	V _{ss_obs} (L/kg)
i.v.	2.5	1833±90	/	/	,	1.4±0.1	2.31.4±0.10.2
p.o.	10	2250±417	2.31±0.5	7	938	/	/

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Wistar Rats (150 mg) ^[2]		
Dosage:	5 mg/kg, 20 mg/kg		
Administration:	Oral Gavage (p.o.)		
Result:	Showed increasing in basal binding with an EC $_{50}$ of 48 μ M and a Combined with 10 μ M glutamate, [35 S]GTP γ S binding with an EC $_{50}$ of 7.3 μ M and a maximal effect of 380%.		

REFERENCES

[1]. Hilde Lavreysen, et al. Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor. Pharmacol Res Perspect 2015 Feb;3(1):e00096.

[2]. Dunlop J, Schizophrenia, et al. Schizophrenia drug discovery and development in an evolving era: are new drug targets fulfilling expectations?. Journal of Psychopharmacology. 29 (2): 230–8.

[3]. Cid JM, et al. Discovery of 1-Butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-(1H)-pyridone (JNJ-40411813): A Novel Positive Allosteric Modulator of the Metabotropic Glutamate 2 Receptor. J Med Chem. 2014 Aug 14;57(15):6495-512.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA