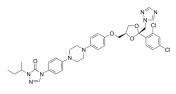
Screening Libraries


Itraconazole

Cat. No.: HY-17514 CAS No.: 84625-61-6 Molecular Formula: $C_{35}H_{38}Cl_{2}N_{8}O_{4}$ 705.63 Molecular Weight:

Target: Fungal; Autophagy; Hedgehog; Cytochrome P450; Antibiotic; Bacterial Pathway: Anti-infection; Autophagy; Stem Cell/Wnt; Metabolic Enzyme/Protease

4°C, protect from light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 6.25 mg/mL (8.86 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.4172 mL	7.0859 mL	14.1717 mL
	5 mM	0.2834 mL	1.4172 mL	2.8343 mL
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 0.5% CMC-Na/saline water Solubility: 20 mg/mL (28.34 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.62 mg/mL (0.88 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.62 mg/mL (0.88 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Itraconazole (R51211) is a triazole antifungal agent and a potent and orally active Hedgehog (Hh) signaling pathway antagonist with an IC $_{50}$ of ~800 nM. Itraconazole potently inhibits lanosterol 14 α -demethylase (cytochrome P450 enzyme), thereby inhibits the oxidative conversion of lanosterol to ergosterol. Itraconazole has anticancer and antiangiogenic effects. $It raconazole \ is \ a \ oxysterol-binding \ protein \ (OSBP) \ inhibitor^{[1][2][3][4]}.$

IC₅₀ & Target

Fungal^[1]

IC50: ~800 nM (Hedgehog signaling pathway)^[1] 14α-demethylase (cytochrome P450 enzyme)^[3]

In Vitro	Itraconazole has anti-proliferation of HUVEC (IC_{50} of $0.16\mu\text{M}$) $^{[2]}$. Itraconazole inhibits endothelial cell cycle progression at the G1 phase in vitro $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	suppresses Hh pathway ac	aconazole (75-100 mg/kg; oral gavage; twice per day; for 18 days; female outbred athymic nude mice) treatment ppresses Hh pathway activity and the growth of medulloblastoma in a mouse allograft model ^[1] . CE has not independently confirmed the accuracy of these methods. They are for reference only. Female outbred athymic nude mice (6-7-week-old) injected with Ptch+/- cells ^[1]	
	Dosage:	75 mg/kg, 100 mg/kg	
	Administration:	Oral gavage; twice per day; for 18 days	
	Result:	Suppressed Hh pathway activity and the growth of medulloblastoma in a mouse allograft model.	

CUSTOMER VALIDATION

- Immunity. 2023 Mar 14;56(3):500-515.e6.
- J Exp Clin Cancer Res. 2019 Sep 13;38(1):404.
- Microbiol Spectr. 2023 May 4;e0530222.
- Sci China Life Sci. 2021 May 27;1-21.
- Int J Mol Sci. 2023, 24(3), 1900.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Kim, J., et al., Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell, 2010. 17(4): p. 388-99.
- [2]. Chong, C.R., et al., Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem Biol, 2007. 2(4): p. 263-70.
- [3]. Pace JR, et al. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic. J Med Chem. 2016 Apr 28;59(8):3635-49.
- [4]. Albulescu L, et al. Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antiviral Res. 2017;140:37-44.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA