Indazole

Cat. No.:	HY-40294		
CAS No.:	271-44-3		
Molecular Formula:	C ₇ H ₆ N ₂		
Molecular Weight:	118.14		
Target:	Monoamine Oxidase; GSK-3; LRRK2		
Pathway:	Neuronal Signaling; PI3K/Akt/mTOR; Stem Cell/Wnt; Autophagy		
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	6 months
		-20°C	1 month

Product Data Sheet

BIOLOGICAL ACTIVITY Description Indazole, also called isoindazole, a heterocyclic aromatic organic compound. Its derivatives display a broad variety of biological activities including anti-inflammatory, antibacterial, anti-HIV, antiarrhythmic, antifungal and antitumour properties. Indazole and its derivatives can be used for research of cancer, neurological disorders, cardiovascular diseases, gastrointestinal diseases^{[1][2][3][4][5]}. In Vitro Indazole compounds possess potential anticancer activity, and indazole-based agents such as, <u>Axitinib</u> (HY-10065), Lonidamine (HY-B0486) and Pazopanib (HY-10208) have already been used for cancer research, demonstrating indazole compounds as useful templates for the development of novel anticancer agents^[1]. Indazoles show potent activities against neurological disorders by inhibiting the monoamine oxidase (MAO) and kinase enzymes like Glycogen synthase kinase 3 (GSK3), and leucinerich repeat kinase enzyme 2 (LRRK2)^[2]. Various natural and synthetic indazole derivatives Nigellicine, Nigellamine, Nigellidine, <u>Zanubrutinib</u> (HY-101474A) and SCH772984 (HY-50846) showes prominent results to cure various gastrointestinal disorders^[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Shang C, et al. The Anticancer Activity of Indazole Compounds: A Mini Review. Curr Top Med Chem. 2021;21(5):363-376.

[2]. Pal D, et al. Importance of Indazole against Neurological Disorders. Curr Top Med Chem. 2022;22(14):1136-1151.

[3]. Uppulapu SK, et al. Indazole and its Derivatives in Cardiovascular Diseases: Overview, Current Scenario, and Future Perspectives. Curr Top Med Chem. 2022;22(14):1177-1188.

[4]. Saha S, et al. Indazole Derivatives Effective against Gastrointestinal Diseases. Curr Top Med Chem. 2022;22(14):1189-1214.

[5]. Qin J, et al. Indazole as a Privileged Scaffold: The Derivatives and their Therapeutic Applications. Anticancer Agents Med Chem. 2021;21(7):839-860.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA