Product Data Sheet

Iloperidone hydrochloride

Cat. No.: HY-17410A CAS No.: 1299470-39-5 Molecular Formula: $C_{24}H_{28}CIFN_2O_4$

Molecular Weight: 462.94

Target: 5-HT Receptor; Dopamine Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	Iloperidone hydrochloride (HP 873 hydrochloride) is a $D_2/5$ -HT $_2$ receptor antagonist. Iloperidone hydrochloride is an atypical antipsychotic for the schizophrenia symptoms [1][2].			
IC₅o & Target	Rat D ₂ Receptor 54 nM (Ki)	Rat 5-HT ₂ Receptor 3.1 nM (Ki)	Rat D_1 Receptor 546 nM (Ki)	Rat 5-HT _{1A} Receptor 168 nM (Ki)
	Rat 5-HT ₆ Receptor 42.7 nM (Ki)	Rat 5-HT ₇ Receptor 21.6 nM (Ki)	Human D ₁ Receptor 216 nM (Ki)	Human D ₃ Receptor 7.1 nM (Ki)
	Human D ₄ Receptor 25 nM (Ki)	Human D ₅ Receptor 319 nM (Ki)	Human 5-HT _{2A} Receptor 5.6 nM (Ki)	Human 5-HT _{2C} Receptor 42.8 nM (Ki)
In Vitro	Iloperidone hydrochloride displays higher affinity for the dopamine D_3 receptor (K_i =7.1 nM) than for the dopamine D_4 receptor (K_i =25 nM). Iloperidone displays high affinity for the 5-HT $_6$ and 5-HT $_7$ receptors (K_i =42.7 and 21.6 nM, respectively), and is found to have higher affinity for the 5-HT $_{2A}$ (K_i =5.6 nM) than for the 5-HT $_{2C}$ receptor (K_i =42.8 nM) $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
In Vivo	Iloperidone hydrochloride is eliminated slowly, with a mean $t_{1/2}$ of 13.5 to 14.0 hours. Coadministration with food did not significantly affect AUC, t_{max} , or C_{max} . These results indicate that the rate of iloperidone's absorption is decreased, but the overall bioavailability is unchanged, when the drug is taken with food. Orthostatic hypotension, dizziness, and somnolence were the most commonly reported adverse events ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			

CUSTOMER VALIDATION

• Neuroreport. 2021 Nov 2;32(16):1299-1306.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Kongsamut, S., et al., Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur J Pharmacol, 1996. 317(2-3): p. 417-23.
- [2]. Sainati, S.M., et al., Safety, tolerability, and effect of food on the pharmacokinetics of iloperidone (HP 873), a potential atypical antipsychotic. J Clin Pharmacol, 1995. 35(7): p. 713-20.

[3]. Albers, L.J., A. Musenga, and M.A. Raggi, Iloperidone: a new benzisoxazole atypical antipsychotic drug. Is it novel enough to impact the crowded atypical antipsychotic market? Expert Opin Investig Drugs, 2008. 17(1): p. 61-75.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com