Product Data Sheet

Gepotidacin

Cat. No.: HY-16742

CAS No.: 1075236-89-3Molecular Formula: $C_{24}H_{28}N_6O_3$ Molecular Weight: 448.52

Target: Bacterial; Topoisomerase

Pathway: Anti-infection; Cell Cycle/DNA Damage

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 7.14 mg/mL (15.92 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2296 mL	11.1478 mL	22.2956 mL
	5 mM	0.4459 mL	2.2296 mL	4.4591 mL
	10 mM	0.2230 mL	1.1148 mL	2.2296 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.71 mg/mL (1.58 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 0.71 mg/mL (1.58 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.71 mg/mL (1.58 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Gepotidacin (GSK2140944) is a novel triazaacenaphthylene bacterial type II topoisomerase inhibitor.

In Vitro

Gepotidacin is a novel, first-in-class, triazaacenaphthylene antibacterial that inhibits bacterial DNA gyrase and topoisomerase IV via a unique mechanism and has demonstrated in vitro activity against gram-negative and gram-positive bacterias , including drug-resistant strains, and also targets pathogens associated with other conventional and biothreat infections. The MIC $_{50}$ and MIC $_{90}$ for gepotidacin against the 25 N. gonorrhoeae isolates tested are 0.12 and 0.25 μ g/mL, respectively^[1]. The gepotidacin MIC $_{90}$ s are as follows (in μ g/mL): Streptococcus pyogenes, 0.25; Escherichia coli, 2; Moraxella catarrhalis, \leq 0.06; Streptococcus pneumoniae, 0.25; Haemophilus influenzae, 1; Clostridium perfringens, 0.5; and

	Shigella spp., $1^{[2]}$. Gepotidacin hasin vitroactivity against causative pathogens of acute bacterial skin and skin structure infections (ABSSSIs) ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	GSK2140944 MICs are 0.125 to 0.5 mg/L against the six MRSA isolates. ELF penetration ratios range from 1.1 to 1.4 . Observed maximal decreases are 1.1 to 3.1 log10 CFU in neutropenic mice. The mean fAUC/MIC ratios required for stasis and 1 -log-unit decreases are 59.3 ± 34.6 and 148.4 ± 83.3 , respectively. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Animal
Administration [4]

Mice: For neutropenic pharmacokinetic studies, at 3 h postinoculation (0 h), groups of 48 infected mice are administered GSK2140944 s.c. in single doses of 6.25, 50, or 200 mg/kg. Blood samples are collected from groups of six mice at 5 min and 0.25, 0.5, 1, 1.5, 2, 3, and 4 h postdose for 6.25- or 50-mg/kg doses and 5 min and 0.25, 0.5, 1, 1.5, 2, 4, and 6 h postdose for the 200-mg/kg dose via cardiac puncture^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nat Microbiol. 2023 Mar;8(3):410-423.
- PLoS Biol. 2020 Oct 5;18(10):e3000819.
- Cell Chem Biol. 2019 Sep 19;26(9):1274-1282.e4.
- Antibiotics (Basel). 2022, 11(2), 192.
- Microbiol Spectr. 2022 Oct 17;e0205622.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Farrell DJ, et al. In Vitro Activity of Gepotidacin (GSK2140944) against Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2017 Feb 23;61(3).
- [2]. Biedenbach DJ, et al. In Vitro Activity of Gepotidacin, a Novel Triazaacenaphthylene Bacterial Topoisomerase Inhibitor, against a Broad Spectrum of Bacterial Pathogens. Antimicrob Agents Chemother. 2016 Jan 4;60(3):1918-23.
- [3]. O'Riordan W, et al. Efficacy, Safety, and Tolerability of Gepotidacin (GSK2140944) in the Treatment of Patients with Suspected or Confirmed Gram-Positive Acute Bacterial Skin and Skin Structure Infections. Antimicrob Agents Chemother. 2017 May 24;61(6).
- [4]. So W, et al. Pharmacodynamic Profile of GSK2140944 against Methicillin-Resistant Staphylococcus aureus in a Murine Lung Infection Model. Antimicrob Agents Chemother. 2015 Aug;59(8):4956-61.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com