Proteins

Product Data Sheet

Flupentixol dihydrochloride

Cat. No.: HY-15856B CAS No.: 2413-38-9

Molecular Formula: $C_{23}H_{27}Cl_{2}F_{3}N_{2}OS$

507.44 Molecular Weight:

Target: Dopamine Receptor; PI3K; Apoptosis

Pathway: GPCR/G Protein; Neuronal Signaling; PI3K/Akt/mTOR; Apoptosis

4°C, sealed storage, away from moisture and light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 100 mg/mL (197.07 mM; Need ultrasonic) DMSO: 33.33 mg/mL (65.68 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9707 mL	9.8534 mL	19.7068 mL
	5 mM	0.3941 mL	1.9707 mL	3.9414 mL
	10 mM	0.1971 mL	0.9853 mL	1.9707 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 50 mg/mL (98.53 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.93 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.93 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.93 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Flupentixol is an orally active D_1/D_2 dopamine receptor antagonist and new PI3K inhibitor (PI3K α IC $_{50}$ =127 nM). Flupentixol

shows anti-proliferative activity to cancer cells and induces apoptosis. Flupentixol can also be used in schizophrenia,

anxiolytic and depressive research [1][2][3].

ΡΙ3Κα D₁ Receptor D₂ Receptor IC₅₀ & Target

Page 1 of 3

	127 nM (IC ₅₀)					
In Vitro	Flupentixol (2.5-40 μM; 2 Flupentixol (2.5-15 μM; 2	Flupentixol (2.5-40 μ M; 72 h) treatment inhibits the viability of lung cancer cells in a dose-dependent manner [3]. Flupentixol (2.5-40 μ M; 24 h) induces apoptosis in lung cancer cells [3]. Flupentixol (2.5-15 μ M; 24 h) inhibits p-AKT and Bcl-2 expression levels [3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay [3]				
	Cell Line:	A549, H661, SK-SEM-1, and NCAL-H520 cells				
	Concentration:	2.5, 5, 10, 20, or 40 μM				
	Incubation Time:	72 hours				
	Result:	Showed the IC $_{50} s$ of 5.708 μM and 6.374 μM for A549 and H661 cells, respectively.				
	Apoptosis Analysis ^[3]	Apoptosis Analysis ^[3]				
	Cell Line:	A549 and H661 cells				
	Concentration:	5, 10, 20 and 40 μM				
	Incubation Time:	24 hours				
	Result:	Increased the percentage of cells in early apoptosis compared with the negative control in both A549 and H661 (p<0.05). Induced the cleavage of PARP and caspase-3 in a dose-dependent manner.				
	Western Blot Analysis ^[3]					
	Cell Line:	A549 and H661 cells				
	Concentration:	2.5, 5, 10, and 15 μM				
	Incubation Time:	24 hours				
	Result:	Decreased AKT phosphorylation levels in a dose-dependent manner, decreased the expression levels of Bcl-2.				
In Vivo		Flupentixol (intragastric injection; 40 mg/kg; once daily; 21 d) suppresses A549 xenografted tumor growth in nude mice ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
	Animal Model:	BALB/C nude mice injected with A549 cells ^[3]				
	Dosage:	40 mg/kg				
	Administration:	Intragastric injection; 40 mg/kg; once daily; 21 days				
	Result:	Reduced tumor volumes compared to the vehicle control (p<0.05), reduced tumor weights by 64.1% (p<0.05).				

REFERENCES

[1]. Ruhrmann S, et al. Efficacy of flupentixol and risperidone in chronic schizophrenia with predominantly negative symptoms. Prog Neuropsychopharmacol Biol Psychiatry. 2007 Jun 30;31(5):1012-22.

Page 2 of 3 www.MedChemExpress.com

[2]. Chao Dong, et al. The antips	sychotic agent flupentixol is	a new PI3K inhibitor and potent	ial anticancer drug for lung cancer. Ir	nt J Biol Sci. 2019 Jun 2;15(7):1523-1532.		
[3]. Yonar D, et al. Effect of cis-(Z)-flupentixol on DPPC membranes in the presence and absence of cholesterol. Chem Phys Lipids. 2016 Jun;198:61-71.						
			edical applications. For research			
	Tel: 609-228-6898 Address: 1	Fax: 609-228-5909 1 Deer Park Dr, Suite Q, Monm	E-mail: tech@MedChemExp outh Junction, NJ 08852, USA	oress.com		

Page 3 of 3 www.MedChemExpress.com