

Product Data Sheet

Enerisant

Cat. No.: HY-17610 CAS No.: 1152747-82-4 Molecular Formula: $C_{22}H_{30}N_4O_3$ Molecular Weight: 398.5

Target: Histamine Receptor

Pathway: GPCR/G Protein; Immunology/Inflammation; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (250.94 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5094 mL	12.5471 mL	25.0941 mL
	5 mM	0.5019 mL	2.5094 mL	5.0188 mL
	10 mM	0.2509 mL	1.2547 mL	2.5094 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (6.27 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: 2.5 mg/mL (6.27 mM); Clear solution; Need ultrasonic
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (6.27 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	Enerisant is a potent, highly selective, competitive and orally active histamine H_3 receptor antagonist/inverse agonist with IC_{50} s of 2.89 nM and 14.5 nM against human and rat histamine H_3 receptors, respectively ^[1] .
IC ₅₀ & Target	IC50: 2.89 nM (human histamine H_3 receptor), 14.5 nM (rat histamine H_3 receptor) Ki: 1.65 nM (human histamine H_3 receptor), 7.87 nM (rat histamine H_3 receptor) ^[1]
In Vivo	Enerisant hydrochloride (0.3-1 mg/kg; p.o.; once) attenuats the dipsogenia response in rats ^[1] .

Enerisant hydrochloride (0.1-3 mg/kg; p.o.; once) results in the occupancy of the histamine H_3 receptor in a dose-dependent manner in rats. A dose eliciting a half-maximal receptor occupancy is 0.78 mg/kg^[1].

Enerisant hydrochloride (1 mg/kg; s.c.; once) increases the total extracellular histamine levels in the posterior hypothalamus in rats $^{[1]}$.

Enerisant hydrochloride (1 mg/kg; i.p.; once) increases the total extracellular dopamine and acetylcholine levels in the medial prefrontal cortex (mPFC) in rats $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male SD rats, R- $lpha$ -methylhistamine-induced dipsogenia model $^{[1]}$	
Dosage:	0.1, 0.3 and 1 mg/kg	
Administration:	Oral, single dose	
Result:	Attenuated the dipsogenia response, reaching statistical significance at doses of 0.3 mg/kg and 1 mg/kg.	

REFERENCES

[1]. Hino N, et al. A novel potent and selective histamine H3 receptor antagonist enerisant: in vitro profiles, in vivo receptor occupancy, and wake-promoting and procognitive effects in rodents. Journal of Pharmacology and Experimental Therapeutics, 2020, 375(2): 276-285.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA