Product Data Sheet

DTNB

Cat. No.: HY-15915 **CAS No.:** 69-78-3

Molecular Weight: 396.35

Target: Biochemical Assay Reagents

Pathway: Others

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (252.30 mM; ultrasonic and warming and heat to 60°C)

H₂O: < 0.1 mg/mL (ultrasonic) (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5230 mL	12.6151 mL	25.2302 mL
	5 mM	0.5046 mL	2.5230 mL	5.0460 mL
	10 mM	0.2523 mL	1.2615 mL	2.5230 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.25 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.25 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (5.25 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	DTNB (Ellman's Reagent) is a chemical used to quantify the number or concentration of thiol groups ^[1] .
In Vitro	DTNB reacts with the free sulfhydryl side chain of cysteine to form an S-S bond between the protein and a thionitrobenzoic acid (TNB) residue ^[1] . ?The main advantage of DTNB over alternative reagents (e.g., N-ethylmaleimide or iodoacetamide) is in the selectivity of this reagent and in the ability to follow the course of the reaction spectrophotometrically ^[1] . ?Modification of Enzyme with DTNB:

?Modification of the SH groups of the enzyme is carried out by reacting 10 μ L of 10 mM DTNB solution (about a 20-fold molar excess) at room temperature with 0.6 mL of enzyme solution (0.807 mg/mL) in 80 mM phosphate buffer, pH 8.0, containing 1 mM EDTA, which has been dialyzed previously against the same buffer solution for 24 h. The number of SH groups is estimated from the increase of absorbance at 410 nm using a molar extinction coefficient of 13,600 M $^{-1}$ cm $^{-1}$ for thionitrobenzoate ions liberated.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Biomaterials. 2022 Jul 21;287:121688.
- Carbohydr Polym. 2023 Dec 16, 121689.
- STAR Protoc. 2022, 3(4): 101921.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. T Nagaoka, et al. DTNB modification of SH groups of isocitrate dehydrogenase from Bacillus stearothermophilus purified by affinity chromatography. J Biochem. 1977 Jan;81(1):71-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA