Product Data Sheet

Clarithromycin

Cat. No.: HY-17508 CAS No.: 81103-11-9 Molecular Formula: C₃₈H₆₉NO₁₃ Molecular Weight: 748

Bacterial; Cytochrome P450; Autophagy; Antibiotic Target: Pathway: Anti-infection; Metabolic Enzyme/Protease; Autophagy

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 33.33 mg/mL (44.56 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.3369 mL	6.6845 mL	13.3690 mL
	5 mM	0.2674 mL	1.3369 mL	2.6738 mL
	10 mM	0.1337 mL	0.6684 mL	1.3369 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (3.34 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (3.34 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (3.34 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	alpha-hydroxylation with the	pectrum of antimicrobial activity. Clarithromycin inhibits the CYP3A4-catalyzed triazolam ${}^{\rm e}$ IC $_{50}$ (${\rm K_i}$) value of 56 (43) ${}^{\rm \mu}{\rm M}^{[2]}$. Clarithromycin significantly inhibits the HERG potassium current autophagic flux by impairing the signaling pathway linking hERG1 and PI3K $^{[4]}$.
IC ₅₀ & Target	CYP3	Macrolide
In Vitro	Clarithromycin produces a similar concentration-dependent block with an IC $_{50}$ of 45.7 $\mu M^{[3]}$.	

?Clarithromycin induces the formation of numerous intracytoplasmic vacuoles after 24?h, in all cell lines, especially in HCT116 cells. Prolonged treatment with Clarithromycin (40, 80, and 160? μ M) alters cell proliferation and triggers apoptotic cell death in colorectal cancer (CRC) cells. Inhibition of cell proliferation is potentiated when Clarithromycin is re-added to the cells. In particular, 160? μ M Clarithromycin, re-added after 48?h of incubation, produces an arrest of cell proliferation at 72?h. Similar effects are obtained in LS174T cells^[4].

?Clarithromycin (80 and 160? μ M; 48 hours) strongly increases the LC3-II/LC3-I ratio, in a dose- and time-dependent manner, with a maximum at 24?h of treatment. This effect is accompanied by a decrease of p62/SQSTM1^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[4]

Result:

Cell Line:	HCT116 cells		
Concentration:	40, 80, and 160 μM		
Incubation Time:	24, 48, 72 hours		
Result:	Reduced HCT116 cell proliferation, although did not completely abolished it.		
Western Blot Analysis ^[4]			
Cell Line:	HCT116 cells		
Concentration:	80 and 160 μM		
Incubation Time:	4, 24, 48 hours		

A decrease of LC3-II and a re-increase of p62/SQSTM1 were observed at 48 hours

In Vivo

Clarithromycin at 200 mg/kg has activity against four tested in vivo $^{[5]}$.

treatment.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Six-week-old beige (C57BL/6J bg $^{\rm j}$ /bg $^{\rm j}$) mice which had been infected with viable M. avium ATCC 49601 $^{\rm [5]}$	
Dosage:	50, 100, 200, or 300 mg/kg	
Administration:	Administered daily by gavage	
Result:	Reduced organ cell counts compared with those in mice given no treatment at all doses Had activity against three additional MAC isolates (MICs for the isolates ranged from 1 to µg/mL by broth dilution) at 200 mg/kg.	

CUSTOMER VALIDATION

- · Acta Pharm Sin B. 2021 Mar 11.
- Water Res. 2023 May 21, 120110.
- Chemosphere. 2019 Jun;225:378-387.
- Cell Prolif. 2021 Jan;54(1):e12953.
- J Med Chem. 2021 Mar 11;64(5):2725-2738.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. D H Peters, et al. Clarithromycin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential. Drugs. 1992 Jul;44(1):117-64.
- [2]. X J Zhao, et al. An in vitro study on the metabolism and possible drug interactions of rokitamycin, a macrolide antibiotic, using human liver microsomes. Drug Metab Dispos. 1999 Jul;27(7):776-85.
- [3]. Scott J C Stanat, et al. Characterization of the inhibitory effects of erythromycin and clarithromycin on the HERG potassium channel. Mol Cell Biochem. 2003 Dec;254(1-2):1-7.
- [4]. Giulia Petroni, et al. Clarithromycin inhibits autophagy in colorectal cancer by regulating the hERG1 potassium channel interaction with PI3K. Cell Death Dis. 2020 Mar 2;11(3):161.
- [5]. S P Klemens, et al. Activity of clarithromycin against Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1992 Nov;36(11):2413-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA