CZC-25146 hydrochloride

Cat. No.: HY-15800 CAS No.: 1330003-04-7 Molecular Formula: $C_{22}H_{26}CIFN_6O_4S$

Molecular Weight: 525 Target: LRRK2 Pathway: Autophagy

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description

CZC-25146 hydrochloride is a potent LRRK2 inhibitor with IC50 values of 4.76 nM and 6.87 nM for wild-type LRRK2 and G2019S LRRK2, respectively. CZC-25146 hydrochloride inhibits PLK4, GAK, TNK1, CAMKK2 and PIP4K2C as well. CZC-25146 hydrochloride prevents mutant LRRK2-induced injury of neurons in vitro. CZC-25146 hydrochloride exhibits relatively favorable pharmacokinetic properties in mice. CZC-25146 hydrochloride can increase normal α -1-antitrypsin (AAT) secretion and reduce inflammatory cytokines. CZC-25146 hydrochloride can be used to research Parkinson's disease and liver diseases^{[1][2][3]}.

IC₅₀ & Target

IC₅₀: 4.76 nM (wild-type LRRK2), 6.87 nM (G2019S LRRK2)^[1]

In Vitro

CZC-25146 (0.01-5 μM; 7 days) does not cause cytotoxicity in human cortical neurons, nor blocking neuronal development^[1]. CZC-25146 (0.01-5 μM; 2 days) potently attenuates G2019S LRRK2-mediated toxicity in primary rodent neurons in a concentration-dependent manner with an EC₅₀ of ~100 nM^[1].

CZC-25146 (0.06-1000 nM) rescues LRRK2 G2019S-induced neurite defects in primary human neurons in a dose-dependent manner^[1].

CZC-25146 (14.3 and 28.6 μM; 48 h) markedly reduces The mutant AAT encoded by the Z allele (ATZ) polymer load and restores AAT secretion in iPSC-Hepatocyte, without compromising cell viability^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cytotoxicity Assay^[1]

Cell Line:	Human cortical neurons
Concentration:	$0.01, 0.1, 1$ and $5\mu\text{M}$
Incubation Time:	7 days
Result:	Did not cause cytotoxicity in human cortical neurons at concentrations below 5 μM over a seven-day treatment in culture, nor did it block neuronal development.

In Vivo

CZC-25146 (1 mg/kg for i.v.; 5 mg/kg for p.o.; single dosage) exhibits relatively good pharmacokinetic properties and an extensive distribution throughout animal body following intravenous injection into mice $^{[1]}$.

CZC-25146 (250 mg/kg; p.o.; 14 days) reduces the ATZ polymer levels in over expressing human polymeric ATZ mice^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male CD-1 mice ^[1]			
Dosage:	1 mg/kg for i.v.; 5 mg/kg for p.o.			
Administration:	i.v. and p.o.; single dosage			
Result:	Pharmacokinetic Parameters of CZC-25146 in male CD-1 mice $^{[1]}$.			
		i.v. (1 mg/kg)	p.o. (5 mg/kg)	
	CL (L/h/kg)	2.3		
	V _{ss} (L/kg)	5.4		
	t _{1/2} (h)	1.6	1	
	t _{max} (h)	0	0.25	
	C _{max} (ng/mL)	154	1357	
	AUC _{last} (ng/mL·h)	419	2878	
	AUC _{inf} (ng/mL·h)	434	2894	
	F (%)		133	
Animal Model:	Genetically modified male mice (6 weeks; over expressing human polymeric ATZ) ^[3]			
Dosage:	250 mg/kg			
Administration:	p.o.; 14 days			
Result:	Dramatically and reproducibly reduced the ATZ polymer levels with an overall reduction from 60% in the control group to 37%			

REFERENCES

- [1]. Atashrazm F, et al. LRRK2 inhibitors and their potential in the treatment of Parkinson's disease: current perspectives. Clin Pharmacol. 2016 Oct 20;8:177-189.
- [2]. Deniz Kent, et al. Small molecule screen employing patient-derived iPS hepatocytes identifies LRRK2 as a novel therapeutic target for Alpha1 Antitrypsin Deficiency.
- [3]. Ramsden N, et al. Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson's disease-related toxicity in human neurons. ACS Chem Biol. 2011 Oct 21;6(10):1021-8.

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com