Proteins

Product Data Sheet

CWP232228

Cat. No.: HY-18959 CAS No.: 1144044-02-9 Molecular Formula: $C_{33}H_{34}N_7Na_2O_7P$

Molecular Weight: 717.62

Target: β-catenin; Wnt Pathway: Stem Cell/Wnt

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 62.5 mg/mL (87.09 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.3935 mL	6.9675 mL	13.9350 mL
	5 mM	0.2787 mL	1.3935 mL	2.7870 mL
	10 mM	0.1393 mL	0.6967 mL	1.3935 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: PBS

Solubility: 50 mg/mL (69.67 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

CWP232228, a highly potent selective Wnt/ β -catenin signaling inhibitor, antagonizes binding of β -catenin to T-cell factor Description (TCF) in the nucleus. CWP232228 suppresses tumor formation and metastasis without toxicity through the inhibition of the

growth of breast and liver cancer stem cells (CSCs)[1].

Wnt/β-catenin^[1] IC₅₀ & Target

In Vitro CWP232228 (0.01-100 μ M; 48 hours) inhibits cell proliferation with IC₅₀ values are 2 and 0.8 μ M in mouse (4T1) and human (MDA-MB-435) breast cancer cell lines, respectively^[1].

 $CWP232228~(0.01\text{-}10~\mu\text{M};48~hours)~inhibits~cell~proliferation~with~IC_{50}s~of~2.566,2.630, and~2.596~\mu\text{M}~in~Hep3B,~Huh7~and~2.596~\mu\text{M}~in~Hep3B,~$

HepG2 cells, respectively^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[1]

Cell Line:	Mouse (4T1) and human (MDA-MB-435) breast cancer cell lines	
Concentration:	0.01, 0.1, 1, 10, 100 μΜ	
Incubation Time:	48 hours	
Result:	$IC_{50}s$ were 2 and 0.8 μM for 4T1 and MDA-MB-435 cell lines, respectively.	
Cell Proliferation Assay [[]	2]	
Cell Line:	Hepatocellular carcinoma cell lines HepG2, Huh7, and Hep3B	
Concentration:	0.01, 0.1, 0.5, 1, 5, 10 μM	
Incubation Time:	48 hours	
	IC ₅₀ s were 2.566, 2.630, and 2.596 μM for Hep3B, Huh7 and HepG2 cells, respectively.	

In Vivo

CWP232228 (100 mg/kg, administered i.p.; daily; 21days for mice bearing 4T1 cell tumors; 60 days for mice bearing MDA-MB-435 cell tumors) results in a significant reduction in tumor volume^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	7-week-old female Balb/c and NOD/SCID mice bearing 4T1 or MDA-MB-435 cell tumors ^[1]	
Dosage:	100 mg/kg	
Administration:	Administered i.p.; daily; 21days for mice bearing 4T1 cell tumors, 60 days for mice bearing MDA-MB-435 cell tumors	
Result:	Treatment resulted in a significant reduction in tumor volume.	

CUSTOMER VALIDATION

- Cell Death Discov. 2022 Oct 1;8(1):404.
- Cell Signal. 2024 Jan 8:111039.
- Front Physiol. 2021 Mar 3;12:626248.
- Research Square Preprint. 2020 Jun.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Jang GB, et al. Wnt/ β -Catenin Small-Molecule Inhibitor CWP232228 Preferentially Inhibits the Growth of Breast Cancer Stem-like Cells. Cancer Res. 2015 Apr 15;75(8):1691-702.

[2]. Kim JY, et al. Oncotarget. 2016 Apr 12;7(15):20395-409. CWP232228 targets liver cancer stem cells through Wnt/ β -catenin signaling: a novel therapeutic approach for liver cancer treatment.

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com