


Bleomycin sulfate

Cat. No.: HY-17565 CAS No.: 9041-93-4

Target: DNA/RNA Synthesis; Antibiotic

Pathway: Cell Cycle/DNA Damage; Anti-infection Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 2 years; -20°C, 1 year (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro	H ₂ O : 255 mg/mL (Need ultrasonic and warming) DMSO : 41.67 mg/mL (Need ultrasonic)
In Vivo	 Add each solvent one by one: PBS Solubility: 100 mg/mL (Infinity mM); Clear solution; Need ultrasonic and warming and heat to 60°C Add each solvent one by one: Saline Solubility: 100 mg/mL (Infinity mM); Clear solution; Need ultrasonic Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (Infinity mM); Clear solution
	4. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (Infinity mM); Clear solution
	5. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (Infinity mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Bleomycin sulfate is a DNA synthesis inhibitor. Bleomycin hydrochloride is a DNA damaging agent. Bleomycin sulfate is an antitumor antibiotic $[1]$.
IC ₅₀ & Target	DNA/RNA Synthesis ^[1]
In Vitro	Bleomycin (BLM) sulfate is chosen as the best-studied micronucleus (MN) inducers in human lymphocytes with different mechanisms of genotoxicity. The most frequent Bleomycin-induced DNA lesions are single and double strand breaks and single apuinic/apyrimidinic sites. At the same time Bleomycin is true radiomimetic compound, resembling almost completely the genetic effect of ionizing radiation ^[1] . The IC ₅₀ value of Bleomycin sulfate for UT-SCC-19A cell line is 4.0±1.3 nM. UT-SCC-12A and UT-SCC-12B are both more resistant to Bleomycin (BLM); IC ₅₀ values are 14.2±2.8 nM and 13.0±1.1 nM, respectively ^[2] . Bleomycin sulfate (50, 100 μ M); for 24, 48 h) induce pulmonary fibrosis in RLE-6TN cell (50 μ M) and A549 cell (100 μ M) ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Bleomycin suLfate (3.5-4.0 mg/kg; intratracheal instillation) significantly increased lung hydroxyproline levels and increased right caudal lobe mass; body weight decreased on day 4 and then increased on day $7^{[3]}$.

Bleomycin suLfate (5.0 mg/kg/d; intratracheal instillation) induces pulmonary fibrosis and increases α -SMA and collagen I in BALB/c mice (20-30 g; 8 weeks old; male) The expression level^[4].

Bleomycin sulfate (2.5 mg/kg; 1.25 mg/mL, 50 μ L; intratracheal instillation) induces pulmonary fibrosis in male C57BL/6 mice (8 weeks old, approximately 24.5 g)^[5].

Bleomycin sulfate is quickly absorbed following intramuscular, subcutaneous, intraperitoneal, or intrapleural administration and reaches peak plasma concentrations in approximately 60 min. Less than 1% of the drug given intravenously binds to plasma proteins, leading to high bioavailability. Additionally, a mean plasma drug clearance approaching 70 mL/min/m^2 has been calculated for Bleomycin sulfate. Bleomycin sulfate possesses a high plasma elimination rate and high urinary excretion rate $^{[6]}$.

Bleomycin sulfate can be used to construct model of pulmonary fibrosis.

Induction of Pulmonary Fibrosis^[7]

Background

Bleomycin sulfate can lead to lung patchy parenchymal inflammation, epithelial cell injury with reactive hyperplasia, epithelial-mesenchymal transition, activation and differentiation of fibroblasts to myofibroblasts, and basement membrane and alveolar epithelium injures. The experimental use of Bleomycin sulfate is to induce pulmonary fibrosis animal models.

Specific Mmodeling Methods

Mice: C57BL/6 • 12-week-old

Administration: 3-5 mg/kg • intratracheal administration • sprays on day one

Note

The mice were housed in separate stainless-steel cages (six mice per cage) in a temperature-controlled environment (20-24°C) on 12 h light-dark cycles with unrestricted access to food and water.

Modeling Indicators

Body quality changes: The appetite activity is reduced, with the fur less shiny, the spirits being lethargic, and the bodyweight decreasing. Showed shortness of breath, coughing, and noisy.

Lung changes: Increased fibrotic consolidations, non-aerated lung area, and high-density lung area. Pulmonary function decreased.

 $\label{eq:molecular} Molecular changes: Increased indicators: TGF-\beta 1, TNF-\alpha, IL-6, and GM-CSF in bronchoal veolar lavage fluid.$

Correlated Product(s): Bleomycin hydrochloride (HY-17565A)

• Opposite Product(s): Neotuberostemonine (HY-N3196)

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Fischer 344 rats, 8-10 week old, weighing 150-250 g ^[3]
Dosage:	3.5-4 mg/kg
Administration:	Intra-tracheal
Result:	Body weights decreased by day 4 then increased by Day 7 through the end of the study.

CUSTOMER VALIDATION

- Nat Metab. 2021 Dec 6.
- Small. 2021 Oct 8;e2103919.
- Redox Biol. 2021 Jul 26;46:102082.
- J Control Release. 2023 Aug;360:365-375.
- MedComm. 2023 Jul 12;4(4):e319.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Brandt JP, et, al. Bleomycin. National Library of Medicine. August 28, 202
- [2]. Gul A, et, al. Pulmonary fibrosis model of mice induced by different administration methods of bleomycin. BMC Pulm Med. 2023 Mar 21;23(1):91.
- [3]. Hovhannisyan G, et al. Comparative analysis of individual chromosome involvement in micronuclei induced by bleomycin in human leukocytes. Mol Cytogenet. 2016 Jun 21;9:49.
- [4]. Jaaskela-Saari HA, et al. Squamous cell cancer cell lines: sensitivity to bleomycin and suitability for animal xenograft studies. Acta Otolaryngol Suppl. 1997;529:241-4.
- [5]. Corboz MR, et al. Therapeutic administration of inhaled INS1009, a treprostinil prodrug formulation, inhibits bleomycin-induced pulmonary fibrosis in rats. Pulm Pharmacol Ther. 2018 Apr;49:95-103.
- [6]. Ling Peng, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 2020 Nov 13;11(11):978.
- [7]. Kang Miao, et al. Scutellarein inhibits BLM-mediated pulmonary fibrosis by affecting fibroblast differentiation, proliferation, and apoptosis. Ther Adv Chronic Dis. 2020 Jul 30;11:2040622320940185.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA