Product Data Sheet

BMS-202

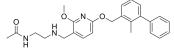
 Cat. No.:
 HY-19745

 CAS No.:
 1675203-84-5

 Molecular Formula:
 C₂₅H₂₉N₃O₃

 Molecular Weight:
 419.52

Target: PD-1/PD-L1; Apoptosis


Pathway: Immunology/Inflammation; Apoptosis

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 1 year

-20°C 6 months

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 100 mg/mL (238.37 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.3837 mL	11.9184 mL	23.8368 mL
	5 mM	0.4767 mL	2.3837 mL	4.7674 mL
	10 mM	0.2384 mL	1.1918 mL	2.3837 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 45% PEG300 >> 5% Tween-80 >> 50% saline Solubility: 4.05 mg/mL (9.65 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.96 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.5 mg/mL (5.96 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.96 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

BMS-202 is a potent and nonpeptidic PD-1/PD-L1 complex inhibitor with an IC₅₀ of 18 nM and a K_D of 8 μM. BMS-202 binds to

PD-L1 and blocks human PD-1/PD-L1 interaction. BMS-202 has antitumor activity^{[1][2]}.

 $\label{eq:lc50} \mbox{IC}_{\mbox{50}} \mbox{ \& Target} \qquad \qquad \mbox{IC}_{\mbox{50}} : 18 \mbox{ nM } (\mbox{PD-1/PD-L1})^{[1]}$

KD: 8 μ M (PD-1/PD-L1)^[1]

In Vitro

BMS-202 (0-100 μ M; 4 days; SCC-3 or Jurkat cells) treatment inhibits the proliferation of strongly PD-L1-positive SCC-3 cells (IC₅₀ of 15 μ M) and anti-CD3 antibody-activated Jurkat cells (IC₅₀ 10 μ M) in vitro^[2].

BMS-202 selectively induces thermal stabilization of PD-L1. BMS-202 induces dimerization of PD-L1 in solution. BMS-202 is located at the center of the homodimer filling a deep hydrophobic pocket contributing multiple additional interactions between the monomers. BMS-202 interacts with both PD-L1 molecules using hydrophobic surfaces physiologically involved in the PD-1/PD-L1 interaction^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[2]

Cell Line:	SCC-3 or Jurkat cells	
Concentration:	0-100 μΜ	
Incubation Time:	4 days	
Result:	Inhibited the proliferation of strongly PD-L1-positive SCC-3 cells (IC $_{50}$ of 15 μ M) and anti-CD3 antibody-activated Jurkat cells (IC $_{50}$ 10 μ M) in vitro.	

In Vivo

BMS-202 (20 mg/kg; intraperitoneal injection; daily; for 9 days; NOG-dKO mice) treatment shows a clear antitumor effect compared with the controls, in humanized MHC- dKO NOG mice $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	NOG-dKO mice (8-week-old) injected with SCC-3 cells ^[2]	
Dosage:	20 mg/kg	
Administration:	Intraperitoneal injection; daily; for 9 days	
Result:	Showed 41% growth inhibitory activity against humanized mouse-transplanted human lymphoma SCC-3 cells.	

CUSTOMER VALIDATION

- Nano Today. 2022, 47: 101689.
- ACS Nano. 2024 Feb 20;18(7):5632-5646.
- Nat Commun. 2021 Dec 9;12(1):7155.
- Acta Pharm Sin B. 22 October 2021.
- Biomater Res. 2023 Nov 24;27(1):120.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Zak KM, et al. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget. 2016 May 24;7(21):30323-35.

[2]. Ashizawa T, et al. Antitumor activity of the PD-1/PD-L1 binding inhibitor BMS-202 in the humanized MHC-double knockout NOG mouse. Biomed Res. 2019;40(6):243-250.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com