

Product Data Sheet

Atopaxar hydrobromide

 $\begin{array}{lll} \textbf{Cat. No.:} & \text{HY-18200B} \\ \\ \textbf{CAS No.:} & 474550\text{-}69\text{-}1 \\ \\ \textbf{Molecular Formula:} & C_{29}\text{H}_{39}\text{BrFN}_{3}\text{O}_{5} \\ \end{array}$

Molecular Weight: 608.54

Target: Protease-Activated Receptor (PAR)

Pathway: GPCR/G Protein

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

H-Br

BIOLOGICAL ACTIVITY

BIOLOGICAL PROTECTION OF THE P		
Description	Atopaxar (E5555) hydrobromide is a potent, orally active, selective and reversible thrombin receptor protease-activated receptor-1 (PAR-1) antagonist. Atopaxar hydrobromide, an antiplatelet agent, interferes with platelet signaling. Atopaxar hydrobromide can be used for the research of atherothrombotic disease ^{[1][2]} .	
IC ₅₀ & Target	PAR-1 ^[1]	
In Vitro	Atopaxar hydrobromide (0.0001-10 μ M; 1h) inhibits haTRAP (high-affinity thrombin receptor activating peptide) binding to PAR-1 on human platelet membranes in a concentration-dependent manner, with an IC ₅₀ of 0.019 μ M[²]. Atopaxar hydrobromide shows potent inhibitory effects on human platelet aggregation induced by thrombin and TRAP with IC ₅₀ s of 0.064 and 0.031 μ M, respectively, but has no effect on platelet aggregation induced by either ADP or collagen ^[2] . Atopaxar hydrobromide shows potent and selective inhibitory effects on guinea pig platelet aggregation induced by thrombin and TRAP with IC ₅₀ s of 0.13 and 0.097 μ M, respectively ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	Atopaxar (30-100 mg/kg; p.o.) hydrobromide causes a dose-dependent prolongation of the time to occlusion of the femoral artery in photochemically-induced thrombosis (PIT) guinea pigs model ^[2] . Atopaxar hydrobromide does not prolong bleeding time in guinea pigs at the highest tested dosage of 1000 mg/kg ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Animal Model: Guinea pigs, PIT model ^[2]	
	Dosage:	Oral administration
	Administration:	10 mg/kg, 30 mg/kg, 100 mg/kg
	Result:	Prolonged the time to occlusion by 1.8-fold and 2.4-fold at 30 mg/kg and 100 mg/kg, respectively, compared with controls.

REFERENCES

[1]. Chris Dockendorff, et al. Discovery of 1,3-Diaminobenzenes as Selective Inhibitors of Platelet Activation at the PAR1 Receptor. ACS Med Chem Lett. 2012 Mar 8; 3(3): 232–237.

Page 2 of 2 www.MedChemExpress.com