Product Data Sheet

Atomoxetine hydrochloride

 Cat. No.:
 HY-17385

 CAS No.:
 82248-59-7

 Molecular Formula:
 C₁₇H₂₂ClNO

 Molecular Weight:
 291.82

Target: Adrenergic Receptor; Serotonin Transporter; Sodium Channel

Pathway: GPCR/G Protein; Neuronal Signaling; Membrane Transporter/Ion Channel

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

H-CI

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 100 mg/mL (342.68 mM)

H₂O: 50 mg/mL (171.34 mM; Need ultrasonic)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.4268 mL	17.1338 mL	34.2677 mL
	5 mM	0.6854 mL	3.4268 mL	6.8535 mL
	10 mM	0.3427 mL	1.7134 mL	3.4268 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 8.33 mg/mL (28.54 mM); Clear solution; Need ultrasonic and warming and heat to 60°C
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (8.57 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (8.57 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.57 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Atomoxetine (Tomoxetine) hydrochloride is a selective noradrenaline reuptake inhibitor with K_i values of 5 nM, 77 nM and 1451 nM for norepinephrine (NE), serotonin (5-HT) and dopamine (DA) transporters, respectively. Atomoxetine hydrochloride is a potent Na⁺ channels (VGSCs) blocker. Atomoxetine hydrochloride can be used for attention-deficit hyperactivity disorder (ADHD) research^{[1][2][3]}.

In Vitro	Atomoxetine (Tomoxetine) (1-100 μ M; 0.5-20 seconds; tsA201 cells) hydrochloride interacts with the human heart muscle sodium channel (hNa _v 1.5) in a state and dose-dependent manner ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	Atomoxetine (0.3-3 mg/kg; i.p.; 0-4 hours; male Sprague-Dawley rats) hydrochlorideincreases extracellular norepinephrine and dopamine by 3-fold and increases Fos expression in the rat prefrontal cortex ^[1] . Atomoxetine (0.1-5 mg/kg; i.p. and p.o; for 14 days; spontaneously hypertensive rat) hydrochloride can improve behaviors associated with ADHD in rats ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Male Sprague-Dawley rats ^[1]	
	Dosage:	0.3, 1 and 3 mg/kg	
	Administration:	Intraperitoneal injection; for 4 hours	
	Result:	Increased the number of cells expressing Fos-like immunoreactivity in PFC 3.7-fold and increased extracellular norepinephrine and dopamine by 3-fold.	
	Animal Model:	Spontaneously hypertensive rat (SHR) ^[3]	
	Dosage:	0.1, 0.3, 1.25 and 5.0 mg/kg	
	Administration:	Intraperitoneal injection and oral administration; for 14 days	

Had non-impact on the measurement of motor activity.

CUSTOMER VALIDATION

• Brain Behav Immun. 2021 Jan 4;S0889-1591(20)32487-9.

Result:

- Behav Brain Res. 28 October 2021, 113642.
- $\bullet \ \ School\ of\ Pharmaceutical\ Sciences\ Trinity\ College\ Institute\ of\ Neuroscience\ Trinity\ College,\ University\ of\ Dublin.\ 2019\ Mar.$

See more customer validations on www.MedChemExpress.com

REFERENCES

- $[1]. \ Turner\ M, et, al.\ Effects\ of\ atomoxetine\ on\ locomotor\ activity\ and\ impulsivity\ in\ the\ spontaneously\ hypertensive\ rat.\ Behav\ Brain\ Res.\ 2013\ Apr\ 15;243:28-37.$
- [2]. Föhr KJ, et, al. Block of Voltage-Gated Sodium Channels by Atomoxetine in a State- and Use-dependent Manner. Front Pharmacol. 2021 Feb 25;12:622489.
- [3]. Bymaster FP, et, al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002 Nov;27(5):699-711.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com